
RESEARCH PAPERS

it also has relevant practical implications to fur-
ther our understanding of population dynamics,
evolution and mutation rates, and to understand
the development of interesting traits, like bacte-
rial resistance to antibiotics.

There is a relevant interest in solving, or at
least understanding, the problem in detail; how-
ever, while growing a bacterial population in the
laboratory is cheap routine work, analysing the
evolution and selection of gene mutations ex-
perimentally is not so simple, as it would require
genotyping of representative samples of bacte-
rial populations and assessment of the impact
of each selected genotype on the viability of its
carrier (Sniegowski et al., 1997).

Because experimental validation is inconven-
ient, it is desirable to model in silico what would
happen in the test tube. The main problem now
is being able to produce realistic simulations: as
cell division is an exponential process, we soon
find ourselves modelling large numbers of speci-
mens, whose mutation events must be tracked,
and we need to collect statistically significant
data.

Running these simulations has largely been
constrained by technological limitations, result-
ing in reductionist models that (despite their
shortcomings) have harvested useful insights on
the problem (Wilke et al., 2001; Lenski et al., 1999;
Adami et al., 2000; Taddei et al., 1997; Johnson,
1999). Despite Moore’s law, running a realistic
simulation easily results in very long computation
times, limiting its usefulness. More specifically,
our estimates for the simulation we wanted to run
were in the order of years of CPU time.

Our simulations use a Monte Carlo method:
we repeat a basic experiment enough times to
collect statistically sound results. Additionally, be-
cause each simulation experiment is independ-
ent from all others, by simply using a different
seed, our approach may be generalised to any
embarrassingly parallel system with a large num-
ber of non-communicating tasks.

Finally, because simulated population growth
is affected by mutation rates and the effect of
random mutations on viability, varying initial con-
ditions have a large impact on population size
during the simulation, resulting in large variability
of simulation run times, posing additional chal-
lenges and making ours a problem of more ge-
neric interest.

José R. Valverde

EMBnet/CNB, Centro Nacional de
Biotecnología, CSIC.
C/Darwin, 3. 28049 Madrid. Spain

Introduction
Building realistic population simulations is a

typical embarrassingly parallel large-scale com-
putation. This kind of problem maps naturally to
massively distributed architectures, like the EGEE
Grid1 (Enabling Grids for E-science in Europe).
Solving this instance therefore provides solid
ground both for solving other similar tasks and for
testing the adequacy of current technology.

Our main interest was to study the selection
processes taking place in bacteria with different
mutation rates. The problem of itself is interest-
ing for many reasons: from a theoretical point of
view, it is a simplified model of the evolution of
more complex organisms and ecosystems; but

1 www.eu-egee.org

Abstract
Analysis of population evolutionary dynamics using re-
alistic models is a challenging task requiring access to
huge resources. Estimates for simple models of population
growth under different mutation and selection conditions
yield running times of Central Processing Unit (CPU) years.
As mutations are stochastic events, experiments can be
split into many separate jobs, reducing to a large Monte
Carlo-like problem that is embarrassingly parallel and thus
maps perfectly on the Grid.
We have been able to run simulations with realistic popula-
tion sizes (up to 1,000,000 individuals) and growth cycles
using the Grid with a ~190x efficiency gain, thus reducing
execution time from years to a few days. This speed-up
allows us to accelerate the simulation cycle, and work on
data analysis and additional model refinements with mini-
mal delays and effort.
We have taken measures at various steps in the process
to study the efficiency gains obtained. While our simple
approach may arguably be far from achieving optimum
efficiency, we were able to achieve significant gains. Here,
we analyse Grid efficiency and discuss which benefits can
be realistically expected with the current technology; we
also provide useful advice for future Grid developers.

All the tools described are available under GNU’s Public
License (GPL) from http://ahriman.cnb.csic.es/sbg/tiki-
download _ file.php?fileId=16

RESEARCH PAPERS

Figure 1. A typical job.jdl file may be as simple or complex as needed.

Type = “job”;

JobType = “normal”;

VirtualOrganisation = “biomed”;

Executable = “job.sh”;

StdOutput = “std.out”;

StdError = “std.err”;

InputSandbox = {“job.sh”, “program”, “input”};

OutputSandbox = {“std.out”,”std.err”, “result.dat”};

This paper deals with the implementation de-
tails of these simulations on the Grid. Our popu-
lation dynamics simulations are still being further
refined, although preliminary results from the
analysis involving various combinations of differ-
ent mutator phenotypes, selection coefficients
and mutation rates led to two main scenarios,
demanding more extensive analysis; these were
presented as part of the 2007 Workshops, Current
Trends in Biomedicine series, “Stress, stress re-

sponses and mechanisms of evolvability” at the
Universidad Internacional de Andalucia, Baeza,
Spain, 2007, and will be fully discussed once
the analysis and experimental verification have
been completed in a separate publication.

Methods

Simulation code
The population dynamics simulation was based
on in-house code written in Fortran95, requiring
no additional libraries or dependencies. The
long run-times required for a realistic simulation
necessitated the problem to be split into sub-
problems suitable for running on the EGEE Grid.
All programs were compiled statically using the
Gfortran compiler to avoid library dependencies
on remote hosts.

Each experiment tests a set of constraints
under a large variety of initial parameters (up to
1,000), executing a sensible number of simulat-
ed culture cycles (up to 100). The initial model
simulated laboratory conditions, using in each
culture cycle an inoculate of individuals with
several genes, taken from a previous culture,
that would undergo many replication, mutation,
competition and selection events until a sensibly
large colony size (usually of the order of a million
individuals), or number of replication events, was
reached.

Output of each simulation run was used to fur-
ther refine and optimise the initial model, making
it more meaningful. This refinement process is still
an ongoing concern.

Owing to the large variation of constraints,
run-times also show large variation, as may be
expected: a population suffering more deleteri-
ous mutations grows less, its reduced number of
individuals resulting in lesser simulation resource
and time requirements.

Grid parallelisation
The simulation was conducted to mimic many in

vivo experiments under controlled starting condi-
tions. Because mutation is a stochastic process,
we could split work into separate runs using differ-
ent random seeds. To manage jobs, we devel-
oped tools that have been progressively refined
to adapt to various issues and shortcomings.

The job-management scripts were devel-
oped as shell scripts, and can be coarsely clas-
sified into three categories: a set of scripts to
generate the large number of jobs required; a
set of generic scripts to launch jobs, monitor their
status and collect results; and a set to process
the results into manageable statistics.

Job management was designed as a set of
generic scripts that can be used for any kind of
non-specific job: the system expects all jobs for
an experiment to be collected in a single directo-
ry, with each job being stored in a separate, self-
contained sub-directory with all data and soft-
ware needed for the computation. Submission
works by traversing all job sub-directories, mak-
ing links to generic Job Definition Language (JDL)
and execution script files, and independently
sending each job to an appropriate resource
broker. Failure recovery involves traversal of the
job sub-directories to search for aborted, failed
or silently dead jobs and resubmitting them up

RESEARCH PAPERS

Figure 2. A typical job.sh script.

#!/bin/bash

#

chmod 755 program

./program < input

Figure 3. A typical job-generation command.

for i in {10..50..10}; do

 for j in {1..20}; do

 job=$i-`printf %02d $j` ;

 mkdir $job

 cd $job

 ln ../../exe/program .

 echo “$i $j” > input

 cd ..

 done

 done

done

to a maximum number of tries. Data collection
checks job status for successful termination and
retrieves the output from the Grid into the job di-
rectory. The whole process is managed from a
higher-level script that controls the timing of sub-
mission, failure recovery and output retrieval until
all jobs have successfully finished.

With generic job management in place, it is
now easy to automate generation of the large
numbers of jobs required: only a generic execu-
tion script and JDL file need to be written, and
copied by the submission system to the job sub-
directory; and a simple script or shell loop-com-
mand are also needed to create the job sub-di-
rectories, copy (or better, hard link to save space)
any common files, and generate any specific
files depending on job parameters (Figures 1, 2
and 3).

Data collection and analysis were similarly
performed by a set of scripts or shell commands:
all that was needed was a loop traversing every
job sub-directory and parsing output to extract
relevant information.

Execution of data collection
In order to assess the impact of Grid architecture
on the efficiency gains obtained, we inserted
in our code specific instructions to collect tim-
ing data at various key steps, so that we could

measure the time invested at each step and
investigate its influence on overall performance.
The steps chosen were as follows: start and end
of job submission (s

0
, s

1
); start and end of job ex-

ecution (e
0
, e

1
) at the Working Node (WN); detec-

tion of job termination/start of result retrieval, and
end of result retrieval (r

0
, r

1
).

Collecting times on the Grid requires addi-
tional care, as different steps will take place in
different time zones. We took advantage of the
fact that the Grid has a universal time and clock
synchronisation, and measured time in Universal
Coordinated Time (UTC) to avoid local offsets.

Another issue worth considering is the underly-
ing WN architecture, as different machines may
lead to different execution speeds. While this is
intuitively true, we didn’t consider it because it
must be coupled to an unknown factor: a given
WN may be simultaneously running more than
one job at different priorities, hence, perhaps
counter-intuitively, a loaded high-speed com-
puter might perform worse than an old slower
machine. Because there is no way to know which
other tasks a given node is executing, at what
priority, or for how long they overlap our job, this
issue was not dealt with.

As our programs were compiled only for a 32-
bit architecture, we also did not examine archi-
tecture-specific (64- vs. 32-bit) differences.

RESEARCH PAPERS

Results

Choice of computing system
From preliminary measures, we expected full ex-
periment simulations to need from one to sev-
eral years of CPU time for each experiment. This
prompted us to seek other alternatives. Our two
main options were the Marenostrum massively
parallel supercomputer and the EGEE Grid. We
opted for the Grid owing to its simplicity and im-
mediate availability.

The problem reduces to a very large Monte
Carlo simulation of mutation events on a dy-
namically growing population. We could further
simplify the simulation by dividing it into separate
growth cycles, much like one would do in labora-
tory practice.

Running one simulation on the Grid
We first tried to shift the parallel/serial balance
towards computation by trying to fit all growth
cycles for a given parameter-set in one pro-
cess. One experiment would therefore require
as many jobs as different initial conditions (hun-
dreds). Each job was submitted and monitored
separately.

This results in many sleeping processes wait-
ing on the system for their monitored jobs to
terminate, to the detriment of other concurrent
users. Moreover, we observed that a discourag-
ingly high number of jobs (~40%) aborted on
execution. Investigation showed that many sites

maintain short-lived batch queues with execu-

tion times of 72 hours or less. Because our prob-
lem could be further split with little extra work, we
therefore decided to generate a larger number
of shorter jobs.

Running a large simulation on the Grid
Next, we selected a job size that would ensure
all jobs would run within the minimum queue
lengths. Thus, instead of simulating 100 inde-
pendent cycles for each set of initial conditions,
we ran 10 jobs of 10 cycles, each requiring be-
tween 8 minutes and 8 hours.

We then changed job management to
launch all the jobs at once and use a daemon
that would periodically check job status, retrieve
results, if complete, or resubmit if aborted, loop-
ing for a reasonable time to ensure all jobs had
a chance to terminate. With the new approach,

we achieved success rates of 90% and analysed
the rest to determine the reasons for failure.

The most concerning kinds of failure were un-

specified job failures. As there is very limited infor-
mation on these failures, and they are relatively
infrequent, there is little else to be done besides
re-starting them. A special kind of problem that
appears about one in every 9,000 jobs is that
job submission hangs indefinitely. A more worri-
some anomaly is immortal jobs. These are jobs
that remain in ‘Running’ status indefinitely, even
after Grid-execution permissions have expired,
probably because the job termination notifica-
tion has been lost. Finally, we were made aware
of a side-effect of our approach on other users:
while we had reduced the load on our front-end
(the User Interface or UI node), we were using and
overloading our default Grid Resource Broker
(RB), which takes care of matching jobs to avail-
able resources. As the RB is shared among sever-
al sites, our load was affecting many other users.
Other failures identified involved successful jobs
whose output was lost, unrecoverable or empty.

To solve submission problems, we extended
our submission tool to use a time-out to detect
stalled submissions, and to maintain a dynamic
list of available RBs to load-balance submissions
over them and avoid overloads. As for job fail-
ures, we added to the monitor script the ability
to detect aborted or failed jobs and to resubmit
them automatically. This simple device is useful
for most problems except immortal jobs, which
can only be detected if it is possible to impose
an upper bound on execution times that may be
used as a time-out or, if not, by submitting jobs
more than once to collect the results of the first to
finish, and kill the others.

Efficiency measures
Using the timings collected, we could measure
for each job the time spent on submission (s

1
- s

0
),

time required by the Grid to allocate resources
and start the job (e

0
 - s

1
), time taken by the job

(e
1
 – e

0
), delay incurred to detect job termination

(r
0
 – e

1
), and time needed to retrieve results (r

1
 – r

0
).

In addition, by collating the individual statistics, it
was easy to measure total times incurred at each
step: e.g., for submission, it would be max{s

1
} –

min{s
0
}), accumulated CPU time ((e

1
 – e

0
)), total

execution wall-clock time (max{r
1
} - min{s

0
}), etc.

The mean execution time for our jobs varied
slightly across experiments, about 8-10K seconds,

RESEARCH PAPERS

yielding, in principle, a good balance between
the serial and parallel parts. However, time vari-
ation ranged between ~500 and 115,000 sec-
onds.

Our initial estimation of the benefit expected
from the Grid was based on our perception that
job submission was a quick process, which we
further bound with a time-out. Indeed, our meas-
ures reveal that, for our problem (homogeneous
jobs of ~800KB in size), submission times are in
the range of 12-266 seconds, with a mean of 32
seconds. Thus, the contribution of the submission
step is very low in relation to the average running
time (0.3-0.4%). Something similar happens with
the final output retrieval step, which ranges be-
tween 5 and 150 seconds.

There are other sources of overhead though:
once a job is copied to the Grid, there is a delay
owing to internal Grid housekeeping. Similarly,
once a job is finished, there is a delay until the
overall Grid self-monitoring structure gets notified
and the status is updated.

From our measures, we conclude that this
contribution is significant and poses a strong tax
on the efficiency gains that can be achieved:
the time taken for a job to start execution ranged
between 30 seconds and 60K seconds, with an
average of ~4-6K.

In order to put these measures in perspective,
we need to know the number of CPUs actually
used: we noted the host name of the WNs and
counted the number of different machines ac-
cessed for each simulation experiment. Usual
numbers were uniformly around 2,400 different
machines for a simulation running 10,000 jobs.

Finally, by comparing the actual execution
time of the job with the total wall-clock time
taken, we can quantify efficiency gains: on av-
erage, jobs took ~9 times longer to run on the
Grid, with the best case taking only 1.006 and
the worst case 150 times more than local execu-
tion.

The massively parallel nature of the Grid,
however, may compensate for these efficiency
losses by allowing many jobs to run simultane-
ously. We added the total CPU time used for a
10,000 job experiment and divided it by the total
time taken. This total time includes job resubmis-
sion and hence accounts for more than 10,000
actual jobs. For our problem, this consistently re-
sulted in a speed-up of ~190-fold relative to a
single computer.

To quantify these benefits, let us denote N
n
the

number of nodes used, N
j
 the number of jobs to

be run, t
j
 the time per job, t

s
 the time to submit a

job, t
b
 the time used in Grid house-keeping tasks,

t
e
 the execution time, and t

r
 the time required for

result retrieval.

(1) The average time needed to run a job would
be rebsj ttttt .

(2) The time needed for sequential execu-
tion of our jobs on a single node would be

je Ntt1 , whereas the time needed for
sequential execution on the Grid (e.g., using
only one node) would be jjg Ntt , which,
as ej tt , means that Grid execution time is
obviously longer for sequential jobs.

(3) The time required for parallel execution on
the Grid is more difficult to evaluate, and de-
pends on the number of nodes that can be
used in parallel. Ideally, the Grid overhead
times (t

s
, t

b
 and t

r
) should be close to zero,

making the total time for parallel execution

nNt /1 . Ideally, one would expect nodes to
be reconsidered as soon as they finish a job,
hence 1)/(sen ttN . However, as the Grid
is geographically spread, one may expect a
significant delay between the time a node
finishes execution and the time an RB notices
it is free. This has an impact on resource al-
location, which now takes longer, making

1)/)((sebn tttN . This means that we
may expect to use up fewer nodes for short-
running jobs than for long-running jobs. We
may also derive estimations for the maximum
number of nodes that can be reached by us-
ing the maximum values of t

b
 and te and the

minimum value of t
s
.

We have already seen that both
st , and

rt
are relatively small (~30 seconds each), and
thus, as

rse ttt , their impact tends to zero (0.3
– 0.4% in our case). The scheduling overhead,
however, is non-negligible. This delay becomes
significant for small job numbers and for short
jobs, hence reducing Grid speed-up2. On the
other hand, as execution time decreases, the
impact of the time required for sequential job
submission increases. This can be ameliorated

2 We have been able to verify these results on other kinds
of problem with different numbers of jobs and execution
times (Carrera, G., Solano, A., Valverde, J. R. and Carazo,
J.M., unpublished).

RESEARCH PAPERS

by partially parallelising job submission, but will
still hit a sequential limit in data transfer from the
submission node to the RB, and usually results in
downgraded performance with respect to an
ideal parallel execution.

Discussion
We needed to reproduce the behaviour of a
population system whose experimental analysis
would have been too cumbersome to simulate
fully, being a stochastic process (mutations),
which requires Monte Carlo-like methods. The dy-
namic behaviour of the system results in dramat-
ic population size changes, depending on the
initial parameters (as a higher impact on survival
fitness means slower growth and smaller popula-
tions), which in turn results in a wide variation in
running times (various orders of magnitude).

The Grid gives any researcher immediate ac-
cess to huge computing power through a large
number of geographically spread machines. For
large parallel problems with reduced communi-
cation needs such as this, the Grid is an easy
and powerful solution.

Optimising computation
Communications in the Grid have a larger laten-
cy and are slower than on a cluster; hence, it is
desirable to keep them at a minimum in relation
to parallel computation, according to Amdahl’s
law. The best trade-off can be achieved when
computation may proceed for long times with a
large number of jobs, but most sites impose run-
time limits (usually 72h).

If the number of jobs to perform is not too
high, users may aim for the smaller number of
sites that accept longer jobs on their queues. On
the other hand, if users prefer to get results more
swiftly by splitting the work among many shorter
jobs, the number of available machines increas-
es considerably.

When execution times are fairly homogene-
ous, users may fine-tune jobs to fit on the allowed
time-slot and optimise the communications/
computation ratio; in our case, large run-time
variability forced us to plan for the worst-case
scenario (ensure longest jobs would fit), resulting
in relevant efficiency penalties for the shortest
jobs.

Job management
For running a single job, the EGEE Grid offers con-
venient commands for the user. However, when
the number of jobs grows to the order of thou-
sands, new problems arise that demand more
sophisticated job-handling mechanisms: the
incidence of aborted or failed jobs, for various
reasons, may reach 10-15% of jobs, requiring the
inclusion of additional job-management proce-
dures. The most immediate approach, and the
one we have used here, is to detect and re-start
failed jobs up to a maximum number of times,
but other approaches are possible: e.g., launch-
ing various instances of the same job, taking the
results of the first to finish and discarding all oth-
ers, or waiting for various jobs to finish and com-
paring their output for additional resilience.

As the number of jobs increases into the tens
of thousands, new issues need to be consid-
ered. First, we reduced overload over the RB by
performing some load balancing over all avail-
able hosts. As RBs themselves may also fail, a
dynamic detection and recovery mechanism
for failing RBs was added too. Second, very rare
events need to be considered and dealt with,
either manually (if their incidence is low enough
and circumstances allow) or automatically. The
most relevant of these is probably jobs hanging
on submission, as this may stop the whole experi-
ment; stalled submission can be conveniently
dealt with by implementing a simple time-out
mechanism.

A different problem is posed by immortal
jobs, which remain eternally in ‘running’ state. This
may be easy to spot if upper-bound estimation
of job run-time is possible, so that jobs exceed-
ing it can be considered lost and re-started; but
when there is high variability in run-times (as was
our case), or there is no easy way to predict an
upper bound, detection of these jobs becomes
increasingly difficult, as the long run-time might
be inherently correct. In such cases, possible so-
lutions are:

(we used ~80 hours) detect, kill and re-start
unfinished jobs;

to finish, killing all other copies.

RESEARCH PAPERS

Efficiency considerations
We have taken timing measures at the various
steps avoiding use of our local cluster and mak-

ing sure jobs were freely allocated to any WNs

by the Grid, so that measures include real-world
effects. Timing checkpoints were taken using UTC
to enforce a common time frame.

Regarding Grid efficiency, we can see that
the submission process is efficient. The same can
be said of result retrieval. Consequently, their im-
pact is almost negligible. This is demonstrated by
our finding a minimum efficiency loss of 0.006
for a Grid job not executed on our local cluster.
Once the job is submitted, jobs suffer a house-
keeping delay until execution. In our experience,
job scheduling took a significant amount of time
(on average, 4-6K seconds) with large variabil-
ity. Given our experiment design, we did not take
accurate measures of Grid house-keeping after
jobs finished: it is possible that there were large
delays, which we didn’t detect because our data
were actually available when we performed the
test. Nevertheless, our results suggest that this fi-
nal step may be fairly quick, taking perhaps a
few minutes, but this needs confirmation.

With these data at hand, we can already
draw several conclusions, which can be used as
advice for Grid usage. First, resource manage-
ment on the Grid is undoubtedly the area where
biggest efficiency gains can still be achieved. If
efficiency is a concern, it may be worth consid-
ering using alternate scheduling mechanisms,
such as those provided by GridWay (Huedo et

al., 2004), currently part of the Globus Toolkit
(Foster and Kesselman, 1997) and planned for
inclusion on gLite3.

For single jobs, efficiency may reduce to as
little as 1.006 or as much as 150 times; however,
on average, it will be reduced by about one or-
der of magnitude. Thus, if the single job to be
run is a Message Passing Interface (MPI) paral-
lel job to be launched against a big (more than
10-node) cluster, it may compensate for the Grid
inefficiency. If the job takes too long and the
system cannot be tied for that amount of time
(e.g., a shared desktop), or if the local system is
already overloaded (e.g., a time-sharing system
with too many CPU-bound processes), then the
Grid provides a convenient way to run jobs that
otherwise would be impossible, difficult or very
slow to complete locally.

3 http://glite.cern.ch

For large numbers of jobs, the Grid provides
a way to speed up problems and deliver quicker
responses, which may prove successful for most
researchers. For instance, we were far from the
maximum theoretical linear speed-up (10,000
times for 10,000 independent processes), and
even from the practical speed-up (2,400 times
for the 2,400 different CPUs we could harvest),
but we still could accelerate our problem 190
times, which allowed us to run in 1½ days (1 day
14h 01m 42s) a project that otherwise would have
taken almost one year (313 days 04h 39m 33s),
or in 4 ½ days (4 days 19h 38m 37s) a project
requiring 2 ½ years (930 days 02h 25m 20s) of
CPU time.

It is worth noting that our low efficiency was
partly the result of our unequal run-times, which
prevented reaching a better parallel/serial ratio.
Higher speed-ups should be possible for better-
behaved problems, or with more refined job-
management strategies.

Conclusion
We have been able to run large-scale popula-
tion dynamics simulations on the Grid with rela-
tively little effort: no changes were needed to
the simulation software, work was split into suit-
ably-sized chunks for execution, and job man-
agement was handled by relatively simple shell
scripts. In the process, we had to deal with and
solve a number of problems, developing gener-
ic tools that are available under the GNU public
license4 from the author.

Each experiment involved large numbers of
jobs (usually 10,000), allowing us to collect sta-
tistical data to monitor Grid performance and
efficiency gains. We have identified Grid house-
keeping as a major contributor to reduced effi-
ciency, although we could still achieve significant
speed-ups (~190x) using thousands (>2,400) of
CPUs, allowing us to solve in days a problem that
would otherwise have taken years to complete.
Our results are in line with observations on other
applications by our group and others (Jacq et

al., 2007), and lay the basic foundation for un-
derstanding the main issues affecting Grid de-
velopment for large embarrassingly parallel ap-
plications.

4 http://ahriman.cnb.csic.es/sbg/tiki-list _ file _ gallery.
php?galleryId=1

RESEARCH PAPERS

Acknowledgements
The author wishes to acknowledge the invalu-
able scientific cooperation of A. Couce and J.
Blázquez of CNB/CSIC.

Funding: I wish to thank the European
Commission for its support to projects EGEE
(INFSO-RI-031688) and EMBRACE (LHSG-
CT-2004-512092), which made this work possible.

References
1. Adami C, Ofria C, Collier TC (2000) Evolution of

biological complexity. Proc Natl Acad Sci USA 97,
4463-4468.

2. Foster I, Kesselman C (1997) Globus: A metacom-
puting infrastructure toolkit Int J Supercomput Appl

11(2), 115-128.

3. Huedo E, Montero RS, Llorente IM (2004) A frame-
work for adaptive execution in Grids. Softw Pract

Exper 34(7), 631-651.

4. Jacq N, Salzemann J, Jacq F, Legré Y, Medernach
E et al. (2007) Grid-enabled Virtual Screening
Against Malaria. J Grid Computing 6(1), 29-43.

5. Lenski RE, Ofria C, Collier TC, Adami C (1999)
Genome complexity, robustness and genetic in-
teractions in digital organisms. Nature 400, 661-
664.

6. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution
of high mutation rates in experimental populations
of E. coli. Nature 387, 703-705.

7. Taddei F, Radman M, Maynard-Smith J, Toupance
B, Gouyon PH, Godelle B (1997) Role of mutator al-
leles in adaptive evolution. Nature 387, 700-702.

8. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C
(2001) Evolution of digital organisms at high muta-
tion rates leads to survival of the flattest. Nature

412, 331-333.

