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Motivation and Objectives
CAGE-seq, cap analysis of gene expression fol-
lowed by next-generation sequencing, allows 
for precise profiling of the promoterome (Plessy 
et al., 2010)  Here, we present a data filtration 
and processing pipeline for analysis of nanoC-
AGE-seq, a variant of the method allowing for 
very small amounts of input material (~50 ng 
per sample), and thus expanding the number 
of tissue- and cell types available for proteome 
profiling. We show, however, that low-intensity sig-
nal across exons, mRNA degradation and other 
method-specific noise is common to this tech-
nique, obfuscating true promoters in the dataset. 
Rigorous filter methods, including tag clustering, 
cluster width and profile filtering, and variance 
filtering rescue bona fide promoters, allowing for 
detection of promoter usage, inter-sample pro-
moter switching and detection of new putative 
promoters. These types of filtering methods could 
potentially also be used on other noisy next-gen-
eration data sets. Here, we present result from 
nanoCAGE from two different studies; data from 
a mouse melanoma skin cancer model, as well 
as data from human acute promyelocytic leuke-
mic blast populations. 

Methods
For both studies, samples were sequenced in 
biological triplicates on the Illumina Genome 
Analyzer II and the Illumina HiSeq 2000, quality 
validated by fastqc (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and trimmed 
when necessary, and were mapped to the mus 
(mm9) and homo (hg19) genomes by Bowtie 
(Langmead et al., 2009). 

For homo and mus nanoCAGE data from the 
Rac1 project, single tags were removed, and 
all sample were merged followed by consen-

sus generation by merging all tags within 20bp. 
Next, we required a 2/1 cluster height to width ra-
tio. Clusters having a width of 5 tags or less were 
removed to filter for PCR-amplification artifacts. 
Tags were counted in consensus clusters per 
sample, and expression values were quantified 
as TPM (tags per million mapped). Clusters with 
<5 TPM in the highest sample were removed to 
filter out noise in the lowest band. The intra-repli-
cate coefficient of variance (CV) was calculated 
for all samples, and clusters with a CV higher 
than 1 were removed.

All statistical analyses were performed in the 
statistical package R (Ihaka et al., 1996), and the 
Bioconductor package edgeR (Robinson et al., 
2010) was used for differential testing.

Results and Discussion
We present preliminary results from nanoCAGE 
in two different studies. First, we show data from 
nanoCAGE of epidermal cells in a model of mel-
onama skin cancer, harvested from Rac1 KO vs. 
WT mice, treated with or without the proliferative 
agent tetradecanoylphorbol acetate (TPA). This 
four-way experiment allows a detailed charac-
terization of promoter usage of treated vs. un-
treated mice, and how the Rac1 gene contrib-
utes to the gene expression in hyperplastic vs. 
normal skin cells. After the initial stringent filtering, 
we present a confined set of high confidence 
promoters (figure 1) and their interactions be-
tween the samples and treatments.  Secondly, 
we present preliminary results from nanoCAGE-
seq of blast cells of human acute promyelocytic 
leukemic populations versus the corresponding 
normal hematopoietic progenitor cell, reveal-
ing, among other things, a pattern of promoter 
switching from full length transcript to shorter tran-
scripts in the cancer cells.
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Figure 1. nanoCAGE-seq data requires rigourous filtering. Scatterplot of all clusters before filtering. X-axis: distance to nearest 
UCSC knownGene transcription start site, y-axis: width of cluster in nt (log2). Clusters are color-coded by expression amount 
(TPM). As evident, higher expressed clusters are closer to the TSS and wider, while the lowest expressed clusters, much of if 
noise, are spread across the genome and are slim.
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