
Abstract

Python Function uncover (PyFuncover) is a new bioinformatic tool able to search proteins with a specific function 
in a full proteome. The pipeline coded in python uses BLAST alignment and the sequences from a PFAM family 
as the search seed. We tested PyFuncover using the fatty acid-binding family (FABP) Lipocalin_7 from PFAM 
(version 32.0, September 2018) against the Homo sapiens NCBI proteome. After applying the scoring function in 
all the BLAST results, the data were classified and submitted to a GO-TERM analysis using bioDBnet. Analyses 
showed that all families of FABPs were ranked within the top scores. Included within this category were also 
families able to bind to hydrophobic molecules similar to fatty acids such as the retinol acid transporter and the 
cellular retinoic acid-binding protein.
Availability: PyFuncover source code is freely available at https://github.com/Tuisto59/PyFuncover/ under the 
GPL licence.

Introduction
High-throughput technologies produce massive amount 
of data and bioinformatics approaches help predict and 
annotate protein function using increasingly complex 
and precise methods. One example is the NCBI 
annotation pipeline (Thibaud-Nissen et al., 2016). The 
human genome sequence was released in 2003 but the 
annotation of the human proteome in January of 2018 
(GRCh38.p12) still contains 2,404 uncharacterised 
proteins (out of 113,620). Protein families for which the 
relationship between sequence and function is more 
complex pose the most significant challenges. The 
enzymes are particularly tricky because only a small part 
of the protein is responsible for its function. Moreover, 
specific binding motifs for which knowledge is still 
partial and poorly annotated add up to this category.

In 2011 a tool called Ada-BLAST was published 
and used to predict a fatty acid-binding motif in the 
human protein BRCA1 (Hedgepeth et al., 2015) and the 
horse Oxy-myoglobin (Patterson et al., 2011), revealing 
in those already well-known proteins a new property. 
Today, this tool is no longer available. Inspired by the 
methodology explained in (Hong et al., 2009; Patterson 
et al., 2011; Dae Ko et al., 2011; Hedgepeth et al., 2015; 
Chintapalli et al., 2015), we created PyFuncover.

PyFuncover is a pipeline able to rank each protein 
from a proteome according to a specific Protein FAMily 

(PFAM) (El-Gebali et al., 2019). As a proof of concept, 
we used this tool to find proteins with putative fatty acid-
binding property in the human proteome. We used as a 
seed the Lipocalin_7 domain family (PF146511).

Workflow
To study a specific activity and to identify other proteins 
with potentially similar function, the first step is to 
recover a large set of protein sequences using as a seed 
the protein annotated with the desired function. Each 
chosen sequence will make ten iterations (PSI-BLAST 
accepts a list of multiple sequences, but only the first 
sequences are used) (see Figure 1, blue box).

Specific family sequences can be downloaded from 
the PFAM database as a multiple sequences alignment 
(MSA) from NCBI2 or UniProt3 using various formats. 
Each sequence has a header containing the protein 
accession, followed by a slash and the domain boundary. 
The accession of all PSI-BLAST reports is compiled, and 
each PFAM accession is checked if it is included in the 
PSI-BLAST results. Other sequences can be from a close 
family to the chosen one or belong to the same PFAM 
family. Gaps from the MSA are removed (see Figure 1, 
green boxes), and a BLAST database is made (see Figure 
1, black box).

A whole proteome dataset can be downloaded or 
any set of proteins in FASTA format (see Figure 1, orange 

1https://pfam.xfam.org/family/Lipocalin_7
2https://www.ncbi.nlm.nih.gov/
3https://www.uniprot.org/
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box). For each sequence, a BLASTp is performed against 
the PFAM BLAST DB (see Figure 1, black box). For each 
protein (subject) that matches our sequence (query), 
BLAST produces alignments, called High Scoring Pairs 
(HSPs). A score of two, for all the identities, and a score 
of one, for all positive substitutions, is computed for 
each alignment. Accession numbers from NCBI are used 
to retrieve data from different databases (GO-Terms, 
UniProt, KEGG, PDB, BioCyc, Ensembl, GenBank…)
(Ashburner et al., 2000; Berman et al., 2000; Clark et al. 
, 2016; Kanehisa et al., 2019; Karp et al., 2017; UniProt 
Consortium, 2018; Zerbino et al., 2018) using the cross-
reference database web application BioDBnet (db2db) 
(Mudunuri et al., 2009) and compiled into a biologist-
friendly table. This makes the results easy to open and 
parse using a spreadsheet software such as Excel.

Proof of concept
To test PyFuncover, we used a selection of human Fatty 
Acid-Binding Proteins (FABPs) (Table 1). The FABPs are 
part of the lipocalin_7 family (PF14651). The accession 
numbers of the 3414 sequences from the MSA of NCBI 
were compared with all the PSI-BLAST results. All the 
sequences were included into the PSI-BLAST results, 
and MSA were used to make the BLAST database. Using 
CDD-Search (Marchler-Bauer et al., 2017), we checked 
the accessions of the PSI-BLAST reports. The accessions 

corresponded to the PFAM Lipocalin_7 or to the 
lipocalins 4 and 5 as expected since all three are members 
of the Calycin superfamily. The human proteome was 
downloaded to perform a BLASTp against the database 
made from the MSA. The XML reports were parsed 
using BioPython (Cock et al., 2009).

Each amino-acid of each protein obtains a score. 
Scores can be represented as a barplot for visual analysis 
(Figure 2). Proteins were split into ten folders (from 
100 up to 1000) based on its highest scored amino acid 
(Figure 2). For the FABPs input set, the highest score was 
1052 for FABP7 (isoform X4, NP_001305971). Human 

Figure 1. Workflow of PyFuncover.

FABP UNIPROT Accession

FABP1 P07148
FABP2 P12104
FABP3 (FABP11) P05413
FABP4 P15090
FABP5 Q01469
FABP6 P51161
FABP7 O15540
FABP8 (PMP2) P02689
FABP9 Q0Z7S8
FABP12 A6NFH5

Table 1. List of the FABP used for the PSI-BLAST run.

http://dx.doi.org/10.14806/ej.24.0.925
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proteomes accession numbers were crossed with the 
GO-TERM database, using BioDBnet (see Figure 1, 
yellow box).

Considering the proteins with a score above 900 
(arbitrarily chosen), we found members of all the nine 
FABPs families (Table 2). Above this threshold, we also 
found five (Cellular) Retinol-Binding Proteins (CRBPs) 
and two (Cellular) Retinoic Acid-Binding Proteins 
(CRABPs). This is remarkable, because FABPs, CRBPs 
and CRABPs are all three subfamilies of the intracellular 
Lipid-Binding Proteins (iLBPs) family. Moreover both 
retinol and retinoic acid display a partially similar 
structure to that of fatty acids (Smathers and Petersen, 
2011). As expected the FABP1 family is ranked first using 
highest mean amino-acid score reaching 735 (Figure 3).

Conclusions
The dataset with a score above 900 contains the top one 
per cent of the input or 1,530 proteins. This number 
dramatically exceeds that described above as a proof of 
concept. This tool aims at helping biologists investigate 
their favourite set of proteins with a simple sequence-
function scoring method. PyFuncover output table 
combines protein identification, score and several useful 

databases cross-references for handy investigation. 
Additionally, while we used it here to detect putative 
fatty acids-binding motifs, PyFuncover can be tailored 
to search other functional features matching the user’s 
wishes.

Key Points 

•  PyFuncover is a new bioinformatic tool to search 
proteins with a specific function in a full proteome.

•  Using the Lipocalin 7 family as input we observed 
in the top-ranked proteins all families of FABPs 
as well as families able to bind to hydrophobic 
molecules similar to fatty acids.

•  PyFuncover output table combines protein 
identification, score and several useful databases 
cross-references for handy investigation.

•  This tool aims at helping biologists investigate their 
favorite set of proteins with a simple sequence-
function scoring method.
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