
Abstract

In this article we present the Network Analysis Profiler (NAP v2.0), a web tool to directly compare the topological 
features of multiple networks simultaneously. NAP is written in R and Shiny and currently offers both 2D and 3D 
network visualisation, as well as simultaneous visual comparisons of node- and edge-based topological features as 
bar charts or scatterplot matrix. NAP is fully interactive, and users can easily export and visualise the intersection 
between any pair of networks using Venn diagrams or a 2D and a 3D multi-layer graph-based visualisation. NAP 
supports weighted, unweighted, directed, undirected and bipartite graphs.

Introduction
Networks are key representations that can capture 
the associations and interactions between any kind of 
bioentity such as genes, proteins, diseases, drugs, small 
molecules and others (Pavlopoulos et al., 2011, 2015; 
Pavlopoulos, Wegener, et al., 2008; Pavlopoulos et al., 
2013; Kontou et al., 2016; Koutrouli et al., 2020). Gene co-
expression networks, gene regulatory networks, protein-
protein interaction networks (PPIs), signal transduction 
networks, metabolic networks, gene-disease networks, 
sequence similarity networks, phylogenetic networks, 
ecological networks, epidemiological networks, drug-
disease networks, disease-symptom networks, literature 
co-occurrence networks, food webs, semantic and 
knowledge networks are the most widely known in the 
biomedical and biomedical-related fields (Koutrouli et 
al., 2020). However, not all networks are the same in 
terms of structure and come with certain topological 
features. For example, Erdos–Rényi networks are 
random graphs with no specific structure (Bollobás, 
2001), Watts-Strogatz networks are random graphs 
with small communities (Watts and Strogatz, 1998), 
and Barabási–Albert networks are random scale-free 
networks whose degree distribution follows a power 
law (Barabási and Albert, 1999). While basic topological 
network analysis is offered by widely used network 
visualisation applications (Pavlopoulos, Wegener, et al., 
2008) such as the Cytoscape (Shannon et al., 2003) and 

Gephi (Bastian et al., 2009), in this article we present the 
Network Analysis Profiler (NAP v2.0), a complementary 
web-based tool designed to fill certain gaps and aid non-
experts in not only analysing the topological features of a 
network, but also to visually perform direct comparisons 
across multiple network in an easy and user-friendly  
way.

The application
In its current version, NAP (Theodosiou et al., 2017) 
supports weighted, unweighted, directed, undirected, 
simple and bipartite networks. It is implemented in R and 
Shiny and most of its backend calculations are based on 
the igraph library (Csardi and Nepusz, 2006). It accepts as 
input a tab-delimited file in which the first two columns 
indicate the connections between the nodes and the third 
column the weight between these edges. Users have the 
option to upload as many networks as they like, name 
them accordingly, and process them simultaneously. 
NAP v2.0 has four main functions: i) Basic Visualisation, 
ii) Topological analysis, iii) Node/Edge ranking and iv) 
Intersection network hosting the common vertices and 
edges between two selected networks. 

Basic 2D/3D visualisation
Once a network has been uploaded and named, it is 
visualised with the use of visNetwork library. VisNetwork 

The Network Analysis Profiler (NAP v2.0): a web 
tool for visual topological comparison between 
multiple networks

© 2021 Koutrouli et al.; the authors have retained copyright and granted the Journal right of first publication; the work has been simultaneously 
released under a Creative Commons Attribution Licence, which allows others to share the work, while acknowledging the original authorship 
and initial publication in this Journal. The full licence notice is available at http://journal.embnet.org.

Te
ch

ni
ca

l N
ot

es

Article history
Received:  19 August 2020
Accepted: 16 September 2020
Published: 12 May 2021

 Page 1 of 6 
not for indexing e943

Koutrouli et al. (2021) EMBnet.journal 26, e943
http://dx.doi.org/10.14806/ej.26.1.943

Mikaela Koutrouli 1, Theodosios Theodosiou 2, Ioannis Iliopoulos 2, Georgios A. Pavlopoulos 1 

1 Institute for Fundamental Biomedical Research, BSRC ˝Alexander, Fleming˝, Vari, Greece
2 University of Crete, School of Medicine, Department of Basic Sciences, Creete, Greece
Competing interests: MK none; TT none; LP none; II none; GAP none

http://dx.doi.org/10.14806/ej.26.1.943


offers a fully interactive visualisation as it allows network 
zooming, dragging, and panning. Nodes can be selected 
and placed anywhere on the plane, whereas the first 
neighbors of any node can be highlighted upon selection. 
This network view can show one network at a time and 
is automatically updated when a different network is 
selected. In this view, NAP supports the following igraph 
layouts (Pavlopoulos et al., 2017):
•	 Fruchterman-Reingold	(Fruchterman	and	Reingold,	

1991): it places nodes on the plane using a force-
directed layout.

•	 Random:	 it	 places	 the	 vertices	 on	 a	 2D	 plane	
uniformly using random coordinates.

•	 Circle:	 it	 places	 vertices	 on	 a	 circle,	 ordered	 by	
name.

•	 Kamada-Kawai	(Kamada	and	Kawai,	1989):	it	places	
the vertices on a 2D plane by simulating a physical 
model of springs.

•	 Reingold-Tilford	(Reingold	and	Tilford,	1981):	this	is	
a tree-like layout and is suitable for trees, ontologies 
and hierarchies.

•	 LGL	 (Adai	 et al., 2004): a force-directed layout 
suitable for larger graphs.

•	 Grid:	this	layout	places	vertices	on	a	rectangular	2D	
grid.

•	 Sphere:	this	layout	places	vertices	on	a	rectangular	
3D-like sphere.
In addition to the 2D visualisation, NAP offers 

a fully interactive 3D network visualisation using a 
force-directed layout. Users can zoom-in and out and 
interactively drag and drop a node or the whole network 
and place it anywhere in space. This visualisation is based 
on the D3.js library and is sufficient for larger graphs, 
especially when the 2D view becomes overcrowded. An 

example of a Yeast PPI (Gavin et al., 2002) is shown in 
Figure 1.

The topological features
In its current version, NAP supports the following 
igraph-based topological features: 
•	 Number	 of	 nodes:	 the	 number	 of	 vertices	 in	 the	

network. 
•	 Diameter:	 the	 length	 of	 the	 longest	 geodesic.	The	

diameter is calculated by using a breadth-first 
search like method. The graph-theoretic or geodesic 
distance between two points is defined as the length 
of the shortest path between them.

•	 Radius:	 the	 eccentricity	 of	 a	 vertex	 is	 its	 shortest	
path distance from the farthest other node in the 
graph. The smallest eccentricity in a graph is called 
its radius. 

•	 Density:	 the	 density	 of	 a	 graph	 is	 the	 ratio	 of	 the	
number of edges divided by the number of possible 
edges.

•	 Average	 path	 length:	 the	 average	 number	 of	 steps	
needed to go from a node to any other.

•	 Clustering	 Coefficient:	 a	 metric	 to	 show	 if	 the	
network has the tendency to form clusters.

•	 Modularity:	this	function	calculates	how	modular	is	
a given division of a graph into subgraphs.

•	 Number	 of	 self-loops:	 the	 number	 of	 nodes	
connected to themselves.

•	 Average	Eccentricity:	the	eccentricity	of	a	vertex	is	
its shortest path distance from the farthest other 
node in the graph.

•	 Average	 Eigenvector	Centrality:	 the	 influence	 of	 a	
node in a network.
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Figure 1. NAP’s basic visualisation.
A) 2D visualisation of a Yeast PPI (Gavin et al., 2002) using the Kamada-Kawai layout. B) The same network visualised 
in 3D.
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•	 Assortativity	degree:	the	assortativity	coefficient	 is	
positive if similar vertices (based on some external 
property) tend to connect or negative otherwise.

•	 Directed	acyclic	graph:	it	shows	if	a	graph	has	cycles	
or not.

•	 Average	 number	 of	 Neighbors:	 the	 number	 of	
neighbors each node of the network has on average.

•	 Centralization	betweenness:	an	indicator	of	a	node’s	
centrality in a network. It is equal to the number of 
shortest paths from all vertices to all others that 
pass through that node. Betweenness centrality 
quantifies the number of times a node acts as a 
bridge along the shortest path between two other 
nodes.

•	 Centralization	closeness:	measures	 the	 speed	with	
which randomly walking messages reach a vertex 
from elsewhere in the graph.

•	 Centralization	 degree:	 defined	 as	 the	 number	 of	
links incident upon a node.

•	 Graph	 mincut:	 calculates	 the	 minimum	 st-cut	
between two vertices in a graph. The minimum st-
cut between source and target is the minimum total 
weight of edges needed to remove to eliminate all 
paths from source to target.

•	 Motifs-3:	 searches	 a	 graph	 for	 motifs	 of	 size	 3	
(Koutrouli et al., 2020).

•	 Motifs-4:	 searches	 a	 graph	 for	 motifs	 of	 size	 4	
(Koutrouli et al., 2020).
While users can select and visualise each 

topological measure in a numeric form, one can select 
several of the uploaded networks and directly compare 
their topological features in different bar charts. Figure 
2 shows an example of a direct comparison between two 
Yeast PPI networks (Gavin et al., 2002, 2006) (generated 
in 2002 and 2006 respectively) and a random scale-
free Albert-Barabasi network consisting of 1000 nodes 
(generated	by	NAP’s	automatic	network	generators).	Bar	
charts are fully interactive and are produced with the use 
of the plotly library. 

Topological feature pairwise comparison 
and node/edge ranking
As	 explained	 in	 NAP’s	 v1.0	 article	 (Theodosiou	 et al., 
2017),  nodes can be ranked by centralisation degree, 
centralisation betweenness, clustering coefficient, page 
rank, eccentricity, eigenvector and subgraph centrality, 
whereas edges can be ranked by betweenness centrality 
only. An all-versus-all scatterplot matrix can be 
generated to show the pairwise correlations between any 
of the selected topological features (Figure 3). The upper 
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Figure 2. Direct comparison of fourteen topological features across three different networks.
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part of the matrix shows the correlation between any 
pair of features in a numerical form, whereas its lower 
part shows these correlations in a scatterplot. If only one 
option has been selected, the viewer will generate a chart 
showing the values of the selected topological feature in 
a histogram.

Network intersection
With NAP, users can automatically extract, export, and 
visualise the common edges and nodes between any 
selected pair of networks. Common node and edge names 
will be initially reported in interactive tables as text. In 
contrast, Venn diagrams are used to show the node/edge 
union and intersection between the two networks. Venn 
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Figure 3. Intra-network pairwise topological feature comparison.

Figure 4. Automatic generation of common edges and nodes between two selected networks. A) A Yeast PPI network 
generated in 2002 (Gavin et al., 2002). B) A Yeast PPI network generated in 2006 (Gavin et al., 2006). C) 2142 com-
mon edges shown in a Venn diagram. D) 1074 common nodes shown in a Venn diagram. E) The generated network 
consisting of the common edges between the 2002 and 2006 yeast PPI networks. 
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diagrams are generated with the use of Venndiagrams 
library whereas VisNetwork library is used to visualise 
the	network’s	 intersection	in	an	interactive	2D	view.	In	
Figure 4, a comparison between two Yeast PPI networks 
(Gavin et al., 2002, 2006), generated in 2002 and 2006 
respectively is shown. 

In addition to the 2D view, NAP gives the option 
to visualise the common parts between two selected 
networks using a 3D multi-layer graph implemented in 
D3.js. Nodes of the first network are placed on a layer 
and are colored in blue, whereas nodes from the second 
network are placed on a different layer and are colored in 
red. Nodes that belong to the two different networks but 

have the same name are considered as common and are 
colored in yellow, whereas edges are drawn to connect 
these nodes across the two layers. Notably, users can use 
a 3-layer representation to place the common nodes on 
a third middle layer for a more comprehensive view (not 
always better).

To minimize the crossovers between the lines 
across layers, a layout can be initially applied on the 
whole network and nodes can be separated on their two 
distinct layers upon completion by adjusting their height 
coordinate. The layouts that are currently supported by 
NAP for this view are the random, circular, fruchterman-
reingold, fruchterman-reingold grid, kamada-kawai, 
spring, and LGL force-directed algorithms.

The multi-layer 3D graph is fully interactive, and 
users can zoom in/out and drag and rotate each node 
or the whole network in 3D space for easier exploration. 
In addition, users can export the network in a text file 
in order to be processed by more advanced third-party 
3D visualisers like, for example, Arena3D (Pavlopoulos 
et al., 2008; Secrier et al., 2012). The whole concept is 
schematically shown in Figure 5. 

Availability
NAP is available at http://bib.fleming.gr:3838/NAP/ 
and its code can be found at https://github.com/
PavlopoulosLab/NAP/
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