Single-cell mapping of microRNA expression during cardiac development

Stefanos Leptidis¹, Eleni Papakonstantinou¹, Katerina Pierouli¹, Athanasios Mitsis¹, Sarantis Chlamydas², Aspasia Efthimiadou³, George P. Chrousos⁴, Elias Eliopoulos⁵, Emil Hansson⁶, Dimitrios Vlachakis¹,⁷,⁸

¹Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
²Active Motif, Office park Nysdam, Avenue Reine Astrid 92, La Hulpe, Belgium
³Hellenic Agricultural Organization-Demeter, Institute of Soil and Water Resources, Department of Soil Science, Lycovrisi, Greece
⁴Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
⁵Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
⁶Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Huddinge, Sweden
⁷Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
⁸School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, London, United Kingdom

Competing interests: SL none; EP none; KP none; AM none; SC none; AE none; GPC none; EE none; DV none

The heart is an exceptionally complex tissue comprised of a variety of different cell types. Understanding physiological cardiac development and its relationship to the development of pathological cardiac diseases require the careful investigation of their related developmental pathways. A highly significant regulatory layer during cellular differentiation is the post-transcriptional regulation via non-coding RNAs and, more specifically, microRNAs (Liu et al., 2010). Previous microRNA transcriptomic studies in the heart lacked in the identification of their differential expression per cell-type (Leptidis et al., 2013). Since microRNAs can target many mRNAs, identifying their cell-type-specific expression is necessary to elucidate the intricate cellular interactions and regulatory pathways and the development of targeted therapeutic approaches.

This study uses data from single-cell small RNA sequencing (small-seq) (Faridani et al., 2016) from early embryonic cardiac progenitor murine cells. We aim to identify the transcriptional profile of small RNAs, mainly microRNAs, during cardiac development. Unlike single-cell RNA sequencing (scRNAseq), there are no established cell-type markers nor data analysis methods in the case of small-seq. Thus, we develop a methodology for identifying cell-types using their microRNA profile, coupled to their predicted targets stemming from various miRNA target prediction algorithms. These data are then cross-referenced with preliminary scRNAseq data in the same tissue, with established cell-types. Deciphering the transcriptomic landscape of microRNAs during cardiac development, along with identifying cell-types based on the relationship between their RNA and microRNA fingerprint, enables the in-depth study of the intricate regulatory interactions between cells, cell-types and different embryonic days.

Acknowledgements

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY).

References


© 2021 Leptidis et al.; the authors have retained copyright and granted the Journal right of first publication; the work has been simultaneously released under a Creative Commons Attribution Licence, which allows others to share the work, while acknowledging the original authorship and initial publication in this Journal. The full licence notice is available at http://journal.embnet.org.