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Improvements in DNA sequencing technology 
have reduced the cost and time of sequenc-
ing a new genome. The new generation of High 
Throughput Sequencing (HTS) devices has pro-
vided large impetus to the life science field, and 
genome sequencing is now a necessary first step 
in many complex research projects, with direct 
implications to the field of medical sequencing, 
cancer and pathogen vector genomics, epi- 
and meta-genomics.   

However, despite the falling sequencing 
cost and time-lines, there are other associated 
costs and difficulties in the process of maintain-
ing a functional data repository on large-scale 
research projects. The new generation of HTS 
technologies [1] has introduced the need for 
increased data-storage technologies whose 
capacity is well beyond the average local data-
storage facilities [2]. In fact, the computing world 
has produced a new term for this paradigm, that 
of data-intensive computing [2a]. Data-storage 
costs are falling; however, a study of the function-
al specifications of popular HTS equipment, such 
as Roche’s 454 pyrosequencers [3], Illumina’s 
hardware [4] and ABI SOLiD technology [5], sug-
gests that a single high-throughput experiment 
run creates several Tbytes of information. If one 
takes into account that genome sequencing 
is often performed repeatedly in order to study 
genetic variation [6], the capacity of a suitable 
data-archiving facility needs to scale to several 
Petabytes of information, which is well beyond 

the scale of most group, departmental or univer-
sity computing facilities. 

Storage of the data is only one of the techni-
cal problems. The distribution and post-process-
ing of large data-sets is also an important issue. 
Initial raw data and resulting post-processing HTS 
files need to be accessed (and perhaps repli-
cated), analyzed and annotated by various sci-
entific communities at regional, national and 
international levels. This is purely a technologi-
cal problem for which clear answers do not ex-
ist, despite the fact that large-scale cyber infra-
structures exist in other scientific fields, such as 
particle physics [7]. However, genome sequence 
data have slightly different requirements from 
particle physics data and thus the process of 
distributing and making sense of large data-sets 
for Genome Assembly and annotation requires 
different technological approaches at the data- 
network and middleware/software layers. For in-
stance, security concerns for clinical HTS settings 
are an issue, as genomic information concerning 
patients is really a patient record and thus needs 
to be addressed in concert with hospital IT and 
security procedures, subsequent to institutional 
security compliance procedures. Moreover, oth-
er field-relevant procedures, such as the de novo 
genome assembly of vertebrate-size genomes, 
require an unusually large amount of RAM per 
processor/core (more than 500 Gigs of RAM), 
which may be a challenge, depending on the 
budget size of the HTS facility and the expertise 
required for running large shared-memory com-
puters.  

This series of articles will discuss and attempt 
to address all of these challenges by means of 
flagging various existing and emerging IT tech-
nologies. In this first part, we will examine a strate-
gy to plan for the amount of disk space you need 
to store and archive HTS data, and look at various 
choices for one of the most critical modules of 
an IT storage infrastructure: the file-system.

Handling HTS data volumes is a classic exam-
ple of data-intensive computing [8]. One of the 
most important aspects of handling a data-in-
tensive computing problem is to understand the 
amount of data you will be dealing with.

Table 1 provides an indicated maximum (siz-
es vary depending on the exact sequencing pa-
rameters and the experiment) data volume per 
device type on an annual basis. All HTS devices 
have a simple conceptual pipeline. Each stage 
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of the pipeline indicates a storage tier. Each stor-
age tier represents different storage functional 
requirements, in terms of the amount and ac-
cess pattern of  storage needed:

Tier 1: Includes the raw unprocessed data as • 

they come out from the instrument (mostly 
images). For most HTS devices, Tier 1 data 
will generate several Tbytes per run (several 
thousands of Gigabytes), especially as the 
instrument’s ability to become more precise 
gets better with time (firmware or device up-
grades).  This type of storage acts as a front 
stage area and needs maximum I/O perform-
ance, as concurrent disk write and read oper-
ations occur most of the time: write ops occur 
from the HTS devices; read ops are essentially 
copies of the raw data by the analysis nodes. 
Normally, the HTS workstations offer local high-
performance disk drives to accommodate 
these requirements per instrument (DAS, Fiber 
Channel). When the initial sample run is com-
plete, these data need to be moved to the 
Tier 1 area to clear the local hard drives for 
more space.  

Tier 2: Initial processing data stage: including • 

base (or colour) calls, intensities and first pass 
quality scores. These data are currently in the 
order of several tenths of Gigabytes to 300 
Gigabytes per run maximum for certain types 
of sequencers.

Tier 3: Includes aligned and analyzed data • 

(alignments of all the reads to a reference or 
de novo assembly, if required). This can be at 
least as big as the initial processing stage (Tier 
2), as the initial reads themselves have to be 
preserved as part of the alignment output. At 
the end of each successful processing step, 
the raw data of Tier 1 are removed. 

     Table. 1: Associating HTS devices and data volumes

HTS Device No. of runs 
per year

Tier 1 
D a t a / r u n 
(Gbytes)

Tier 2 Data/
run
(Gbytes)

Tier 3 
Data/ run 
(Gbytes)
(Analysis)

Tier 4 
D a t a / r u n 
(Gbytes)
( B a c k u p 
and ar-
chive)

P roduced 
data per 
year
(Tbytes)

Illumina 100 9728 100 300 400 990

454 100 200 50 25 75 27

SOLiD 100 6144 100 100 200 80

Tier 4: The final, fourth tier includes data that • 

should be backed up off site, in order to pro-
vide for disaster recovery, as well as a long-
term archive. This includes a mirror of Tiers 2 
and 3, plus the archive requirements. It is not 
financially feasible or technically practical to 
off-site backup Tier 1 data, at least not for eve-
ry run, as the volume of data is huge. There is 
some data redundancy between Tiers 2 and 
3, as in theory one could resort to Tier 3 reads 
according to the alignment output and then 
discard Tier 2 data. However, this might not be 
feasible/desirable in all analysis scenarios, and 
thus we assume it is good practice to backup 
and archive both Tier 2 and Tier 3 data.

Tier 1 could be implemented as a disk redundant 
(RAID 1, 6, other) data-storage area with capac-
ity given by the following equation:

Tier1
store

=∑(N
hts

 x G
bpr

 + (N
hts

 x G
bpr

)/4)

N
hts

=number of per type HTS devices,

G
bpr

=Gigabytes per run

The (Nhts x Gbpr)/4 factor represents a small rec-
ommended buffer to accommodate unexpect-
ed stalls of the HTS pipeline (loss of computing 
nodes, problems in copying/referencing Tier 1 
data, etc). 

Tiers 2 and 3 can occupy a common set of 
disks to form the analysis staging area, accord-
ing to the following equation:

Tier2,3
store

=∑(N
runs

 x G
analysis

 + (N
runs

 x G
analysis

)/3)

N
runs

=expected number of runs per year,

G
analysis

=Gigabytes per run for Tiers 2 and 3 (Table 1)

Finally, Tier 4 backup and storage requirements 
depend on the data retention policies. We as-
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sume that processed experimental data should 
be kept for a number of years, thus:

Tier4
store

=Tier2,3
store

 +  R
period

 x Tier2,3
store

R
period

= number of years to keep the data

Based on these equations, and Table 1 re-
quirements, for an example that includes 2 
Illumina sequencers, a couple of 454, a sin-
gle SOLiD machine and a retention period of 3 
years, we need a tiered infrastructure as shown 
in Figure 1. Note how Tier 4 is broken down to the 
active mirror (facilitates disaster recovery) and 

Figure 1. Breaking down the storage requirements per tier.

the archive, which could include slower Disk-to-
Disk (D2D) or tape robot archive solutions.

This methodology shows how easily data vol-
umes can scale to large data-sets. The tiered ar-
chitecture allows one to scale different storage 
requirements independently. 

Whilst the previous paragraphs quantified the 
amount of data produced by an HTS facility and 
the volumes, it is really important to consider 
how to build those volumes. It becomes clear 
that handling the size of the HTC data-sets can 
be an IT engineering challenge. Traditional High 
Performance Computing (HPC) has addressed 
the issues of tackling large data-sets by introduc-
ing a number of technologies (queue batch/grid 
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systems, specialized processor interconnects, 
parallel programming). Not all of them are ad-
equate to address the challenges of large HTS 
data-sets. In particular, two IT areas need a sig-
nificant engineering overhaul to handle the vol-
ume of HTS data efficiently.

A file-system is a key component of the 
Operating System that dictates how the files are 
stored and accessed. Weaknesses in the file-
system ability to handle large data-sets can se-
verely affect HTS operations. 

Today’s common file-system choices include 
options such as ext3 [9] on Linux platforms, NTFS 
[10]  for Windows platforms, and HFS+ [11] for 
Apple-based computers. They perform well with 
common desktop storage loads and with cer-
tain multi TiB scenarios on a file server. However, 
they do not scale well up to hundreds of Terayte 
or Petabyte-scale scenarios, either because of 
specific file and volume limits (ext3) and limits 
in handling efficiently a large number of small 
files in deeply nested directory structures. Finally, 
there are issues with concurrent access to a set 
of files and directories, a common scenario in 
large HPC clusters.

For these reasons, HPC setups have employed 
different file-system varieties to satisfy large and 
concurrent access file scenarios. The first cat-
egory is commonly referred to as ‘clustered’ or 
‘shared’ disk file-systems. Some commonly em-
ployed examples of clustered file-systems in-
clude IBM’s General Parallel File System (GPFS) 
[12], Apple’s XSAN[13] and other commercial of-
ferings, such as Isilon’s OneFS solution [14]. There 
is a great variety of academic HPC setups that 
already run large GPFS installations, handling 
concurrency and high availability with varying 
degrees of success. Isilon’s system solutions also 
had varying degrees of success acting as a Tier 
1 storage solution for some large academic set-
ups.

Most (if not all) clustered file-system imple-
mentations assume the existence of a block-de-
vice layer, in order to connect client devices and 
backend storage disks. So, they offer the illusion 
of a backend storage device appearing as local 
disk to a system, provided that a Fiber Channel 
(FC) or iSCSI based solution is employed. This is a 
highly desirable functionality on the Tier 1 storage 
area. For example, instead of employing com-
mon utilities such as FTP/Rsync to move data off 
the HTS device to the Tier 1 area, the same thing 

could be performed by a simple file level copy 
operation. Depending on the purity of the block-
layer protocol (pure FC will not include TCP/IP 
overhead), copying multiple TiBs of data from the 
instrument disks to the Tier 1 staging area could 
be performed more efficiently. Latter paragraphs 
will touch on a promising technology to further 
simplify this process (FCoE).

The second (and less commonly employed) 
category of file-systems is referred to as distrib-
uted file-systems. A distributed file-system allows 
access to files located on another remote host 
as though working on the actual host compu-
ter. In contrast to clustered file systems, the file 
locality illusion now is facilitated by means of net-
work-layer code and not by block-layer device 
emulation. NFS and the emerging pNFS standard 
[15] are commonly employed in many bioinfor-
matics setups; however, the protocol suffers from 
scalability and data-redundancy problems. To 
address these problems, a new generation of 
distributed fault-tolerant and parallel file-systems 
exists. Two notable examples of such file-sys-
tems are the Sun’s Lustre file-system [16] and the 
Hadoop Distributed File System (HDFS) [17].

It is sometimes difficult to distinguish between 
certain features of clustered and distributed 
file-system solutions, as the feature-set of new 
generation distributed file-systems is expanding. 
However, one notable difference between tra-
ditional cluster file-systems and new distributed 
file-systems is that the latter are explicitly de-
signed to handle data-sets in the order of several 
Petabytes, something that might not be entirely 
true for most of the previously mentioned cluster 
file-systems. In that sense, both Lustre and HDFS 
are highly suited to facilitate the file-system stor-
age of Tiers 2 and 3, and at least the active mir-
ror of Tier 4. Which of the two is more suitable is a 
matter of choice and experimentation. Tailored 
solutions that lead to definite conclusions do not 
yet exist, and understanding the pros and cons 
of these two platforms is work in progress. 

The most notable differences between Lustre 
and HDFS is that the second is less mature in 
generic production environments and requires 
a substantial effort to express the data-set using 
the map/reduce [18] concept. HDFS is part of a 
data-processing framework and as such most 
data-sets must be converted before they can 
take advantage of its power. There have been 
successful attempts to employ the Hadoop 
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framework on bioinformatics problems [19]. On 
the other hand, Lustre is a much more file-orient-
ed storage framework. It also requires substantial 
effort to setup, especially when it comes to con-
verting data from older Lustre versions, but it does 
not require any explicit data-set conversion. 

I hope that I have given your storage archi-
tects plenty of food for thought. In the next arti-
cle, I shall look at the data-network layer. 
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