
EMBnet.news 15.4 TECHNICAL NOTES 51

High Throughput Sequencing and the

IT architecture

Part 1 : Volume dimensioning and

filesystems

George Magklaras

The Biotechnology Centre of Oslo, The University
of Oslo (Biotek - UiO), Oslo, Norway

Improvements in DNA sequencing technology
have reduced the cost and time of sequenc-
ing a new genome. The new generation of High
Throughput Sequencing (HTS) devices has pro-
vided large impetus to the life science field, and
genome sequencing is now a necessary first step
in many complex research projects, with direct
implications to the field of medical sequencing,
cancer and pathogen vector genomics, epi-
and meta-genomics.

However, despite the falling sequencing
cost and time-lines, there are other associated
costs and difficulties in the process of maintain-
ing a functional data repository on large-scale
research projects. The new generation of HTS
technologies [1] has introduced the need for
increased data-storage technologies whose
capacity is well beyond the average local data-
storage facilities [2]. In fact, the computing world
has produced a new term for this paradigm, that
of data-intensive computing [2a]. Data-storage
costs are falling; however, a study of the function-
al specifications of popular HTS equipment, such
as Roche’s 454 pyrosequencers [3], Illumina’s
hardware [4] and ABI SOLiD technology [5], sug-
gests that a single high-throughput experiment
run creates several Tbytes of information. If one
takes into account that genome sequencing
is often performed repeatedly in order to study
genetic variation [6], the capacity of a suitable
data-archiving facility needs to scale to several
Petabytes of information, which is well beyond

the scale of most group, departmental or univer-
sity computing facilities.

Storage of the data is only one of the techni-
cal problems. The distribution and post-process-
ing of large data-sets is also an important issue.
Initial raw data and resulting post-processing HTS
files need to be accessed (and perhaps repli-
cated), analyzed and annotated by various sci-
entific communities at regional, national and
international levels. This is purely a technologi-
cal problem for which clear answers do not ex-
ist, despite the fact that large-scale cyber infra-
structures exist in other scientific fields, such as
particle physics [7]. However, genome sequence
data have slightly different requirements from
particle physics data and thus the process of
distributing and making sense of large data-sets
for Genome Assembly and annotation requires
different technological approaches at the data-
network and middleware/software layers. For in-
stance, security concerns for clinical HTS settings
are an issue, as genomic information concerning
patients is really a patient record and thus needs
to be addressed in concert with hospital IT and
security procedures, subsequent to institutional
security compliance procedures. Moreover, oth-
er field-relevant procedures, such as the de novo
genome assembly of vertebrate-size genomes,
require an unusually large amount of RAM per
processor/core (more than 500 Gigs of RAM),
which may be a challenge, depending on the
budget size of the HTS facility and the expertise
required for running large shared-memory com-
puters.

This series of articles will discuss and attempt
to address all of these challenges by means of
flagging various existing and emerging IT tech-
nologies. In this first part, we will examine a strate-
gy to plan for the amount of disk space you need
to store and archive HTS data, and look at various
choices for one of the most critical modules of
an IT storage infrastructure: the file-system.

Handling HTS data volumes is a classic exam-
ple of data-intensive computing [8]. One of the
most important aspects of handling a data-in-
tensive computing problem is to understand the
amount of data you will be dealing with.

Table 1 provides an indicated maximum (siz-
es vary depending on the exact sequencing pa-
rameters and the experiment) data volume per
device type on an annual basis. All HTS devices
have a simple conceptual pipeline. Each stage

52 TECHNICAL NOTES EMBnet.news 15.4

of the pipeline indicates a storage tier. Each stor-
age tier represents different storage functional
requirements, in terms of the amount and ac-
cess pattern of storage needed:

Tier 1: Includes the raw unprocessed data as •

they come out from the instrument (mostly
images). For most HTS devices, Tier 1 data
will generate several Tbytes per run (several
thousands of Gigabytes), especially as the
instrument’s ability to become more precise
gets better with time (firmware or device up-
grades). This type of storage acts as a front
stage area and needs maximum I/O perform-
ance, as concurrent disk write and read oper-
ations occur most of the time: write ops occur
from the HTS devices; read ops are essentially
copies of the raw data by the analysis nodes.
Normally, the HTS workstations offer local high-
performance disk drives to accommodate
these requirements per instrument (DAS, Fiber
Channel). When the initial sample run is com-
plete, these data need to be moved to the
Tier 1 area to clear the local hard drives for
more space.

Tier 2: Initial processing data stage: including •

base (or colour) calls, intensities and first pass
quality scores. These data are currently in the
order of several tenths of Gigabytes to 300
Gigabytes per run maximum for certain types
of sequencers.

Tier 3: Includes aligned and analyzed data •

(alignments of all the reads to a reference or
de novo assembly, if required). This can be at
least as big as the initial processing stage (Tier
2), as the initial reads themselves have to be
preserved as part of the alignment output. At
the end of each successful processing step,
the raw data of Tier 1 are removed.

 Table. 1: Associating HTS devices and data volumes

HTS Device No. of runs
per year

Tier 1
D a t a / r u n
(Gbytes)

Tier 2 Data/
run
(Gbytes)

Tier 3
Data/ run
(Gbytes)
(Analysis)

Tier 4
D a t a / r u n
(Gbytes)
(B a c k u p
and ar-
chive)

P roduced
data per
year
(Tbytes)

Illumina 100 9728 100 300 400 990

454 100 200 50 25 75 27

SOLiD 100 6144 100 100 200 80

Tier 4: The final, fourth tier includes data that •

should be backed up off site, in order to pro-
vide for disaster recovery, as well as a long-
term archive. This includes a mirror of Tiers 2
and 3, plus the archive requirements. It is not
financially feasible or technically practical to
off-site backup Tier 1 data, at least not for eve-
ry run, as the volume of data is huge. There is
some data redundancy between Tiers 2 and
3, as in theory one could resort to Tier 3 reads
according to the alignment output and then
discard Tier 2 data. However, this might not be
feasible/desirable in all analysis scenarios, and
thus we assume it is good practice to backup
and archive both Tier 2 and Tier 3 data.

Tier 1 could be implemented as a disk redundant
(RAID 1, 6, other) data-storage area with capac-
ity given by the following equation:

Tier1
store

=∑(N
hts

 x G
bpr

 + (N
hts

 x G
bpr

)/4)

N
hts

=number of per type HTS devices,

G
bpr

=Gigabytes per run

The (Nhts x Gbpr)/4 factor represents a small rec-
ommended buffer to accommodate unexpect-
ed stalls of the HTS pipeline (loss of computing
nodes, problems in copying/referencing Tier 1
data, etc).

Tiers 2 and 3 can occupy a common set of
disks to form the analysis staging area, accord-
ing to the following equation:

Tier2,3
store

=∑(N
runs

 x G
analysis

 + (N
runs

 x G
analysis

)/3)

N
runs

=expected number of runs per year,

G
analysis

=Gigabytes per run for Tiers 2 and 3 (Table 1)

Finally, Tier 4 backup and storage requirements
depend on the data retention policies. We as-

EMBnet.news 15.4 TECHNICAL NOTES 53

sume that processed experimental data should
be kept for a number of years, thus:

Tier4
store

=Tier2,3
store

 + R
period

 x Tier2,3
store

R
period

= number of years to keep the data

Based on these equations, and Table 1 re-
quirements, for an example that includes 2
Illumina sequencers, a couple of 454, a sin-
gle SOLiD machine and a retention period of 3
years, we need a tiered infrastructure as shown
in Figure 1. Note how Tier 4 is broken down to the
active mirror (facilitates disaster recovery) and

Figure 1. Breaking down the storage requirements per tier.

the archive, which could include slower Disk-to-
Disk (D2D) or tape robot archive solutions.

This methodology shows how easily data vol-
umes can scale to large data-sets. The tiered ar-
chitecture allows one to scale different storage
requirements independently.

Whilst the previous paragraphs quantified the
amount of data produced by an HTS facility and
the volumes, it is really important to consider
how to build those volumes. It becomes clear
that handling the size of the HTC data-sets can
be an IT engineering challenge. Traditional High
Performance Computing (HPC) has addressed
the issues of tackling large data-sets by introduc-
ing a number of technologies (queue batch/grid

54 TECHNICAL NOTES EMBnet.news 15.4

systems, specialized processor interconnects,
parallel programming). Not all of them are ad-
equate to address the challenges of large HTS
data-sets. In particular, two IT areas need a sig-
nificant engineering overhaul to handle the vol-
ume of HTS data efficiently.

A file-system is a key component of the
Operating System that dictates how the files are
stored and accessed. Weaknesses in the file-
system ability to handle large data-sets can se-
verely affect HTS operations.

Today’s common file-system choices include
options such as ext3 [9] on Linux platforms, NTFS
[10] for Windows platforms, and HFS+ [11] for
Apple-based computers. They perform well with
common desktop storage loads and with cer-
tain multi TiB scenarios on a file server. However,
they do not scale well up to hundreds of Terayte
or Petabyte-scale scenarios, either because of
specific file and volume limits (ext3) and limits
in handling efficiently a large number of small
files in deeply nested directory structures. Finally,
there are issues with concurrent access to a set
of files and directories, a common scenario in
large HPC clusters.

For these reasons, HPC setups have employed
different file-system varieties to satisfy large and
concurrent access file scenarios. The first cat-
egory is commonly referred to as ‘clustered’ or
‘shared’ disk file-systems. Some commonly em-
ployed examples of clustered file-systems in-
clude IBM’s General Parallel File System (GPFS)
[12], Apple’s XSAN[13] and other commercial of-
ferings, such as Isilon’s OneFS solution [14]. There
is a great variety of academic HPC setups that
already run large GPFS installations, handling
concurrency and high availability with varying
degrees of success. Isilon’s system solutions also
had varying degrees of success acting as a Tier
1 storage solution for some large academic set-
ups.

Most (if not all) clustered file-system imple-
mentations assume the existence of a block-de-
vice layer, in order to connect client devices and
backend storage disks. So, they offer the illusion
of a backend storage device appearing as local
disk to a system, provided that a Fiber Channel
(FC) or iSCSI based solution is employed. This is a
highly desirable functionality on the Tier 1 storage
area. For example, instead of employing com-
mon utilities such as FTP/Rsync to move data off
the HTS device to the Tier 1 area, the same thing

could be performed by a simple file level copy
operation. Depending on the purity of the block-
layer protocol (pure FC will not include TCP/IP
overhead), copying multiple TiBs of data from the
instrument disks to the Tier 1 staging area could
be performed more efficiently. Latter paragraphs
will touch on a promising technology to further
simplify this process (FCoE).

The second (and less commonly employed)
category of file-systems is referred to as distrib-
uted file-systems. A distributed file-system allows
access to files located on another remote host
as though working on the actual host compu-
ter. In contrast to clustered file systems, the file
locality illusion now is facilitated by means of net-
work-layer code and not by block-layer device
emulation. NFS and the emerging pNFS standard
[15] are commonly employed in many bioinfor-
matics setups; however, the protocol suffers from
scalability and data-redundancy problems. To
address these problems, a new generation of
distributed fault-tolerant and parallel file-systems
exists. Two notable examples of such file-sys-
tems are the Sun’s Lustre file-system [16] and the
Hadoop Distributed File System (HDFS) [17].

It is sometimes difficult to distinguish between
certain features of clustered and distributed
file-system solutions, as the feature-set of new
generation distributed file-systems is expanding.
However, one notable difference between tra-
ditional cluster file-systems and new distributed
file-systems is that the latter are explicitly de-
signed to handle data-sets in the order of several
Petabytes, something that might not be entirely
true for most of the previously mentioned cluster
file-systems. In that sense, both Lustre and HDFS
are highly suited to facilitate the file-system stor-
age of Tiers 2 and 3, and at least the active mir-
ror of Tier 4. Which of the two is more suitable is a
matter of choice and experimentation. Tailored
solutions that lead to definite conclusions do not
yet exist, and understanding the pros and cons
of these two platforms is work in progress.

The most notable differences between Lustre
and HDFS is that the second is less mature in
generic production environments and requires
a substantial effort to express the data-set using
the map/reduce [18] concept. HDFS is part of a
data-processing framework and as such most
data-sets must be converted before they can
take advantage of its power. There have been
successful attempts to employ the Hadoop

EMBnet.news 15.4 TECHNICAL NOTES 55

framework on bioinformatics problems [19]. On
the other hand, Lustre is a much more file-orient-
ed storage framework. It also requires substantial
effort to setup, especially when it comes to con-
verting data from older Lustre versions, but it does
not require any explicit data-set conversion.

I hope that I have given your storage archi-
tects plenty of food for thought. In the next arti-
cle, I shall look at the data-network layer.

References
“Genome sequencing: the third generation”, 1.
Published online 6 February 2009 | Nature |
doi:10.1038/news.2009.86

”Big data: Welcome to the petacentre”, 2.
Published online 3 September 2008 | Nature
455, 16-21 (2008) | doi:10.1038/455016a

2a.Gorton I., Greenfield P., Szaley A., Williams
R. (2008), “Data Intensive Computing for
the 21st Century, IEEE Computer,
April 2008 issue.
The 454 sequencer product line specifica-3.
tions: http://www.454.com/products-solutions/
product-list.asp

Illumina Genome sequencers product line 4.
specifications: http://www.illumina.com/pag-
esnrn.ilmn?ID=26

Applied Biosystems SOLiD system specifica-5.
tions: http://www3.appliedbiosystems.com

1000 genomes project portal: 6.
http://1000genomes.org/page.php

Figure 2. A computer cluster.

The worldwide Large Hydron Collider (LHC) 7.
Computing Grid portal at CERN: http://lcg.
web.cern.ch/LCG/

Kouzes et al (2009), “The changing paradigm 8.
of data-intensive computing”, Computer,
January 2009 issue, IEEE Computer Society,
pages 26-34.

Stephen C. Tweedie (May 1998). “Journaling 9.
the Linux ext2fs Filesystem” (PDF). Proceedings
of the 4th Annual LinuxExpo, Durham, NC.
http://jamesthornton.com/hotlist/linux-filesys-
tems/ext3-journal-design.pdf.

The NTFS wikipedia page: 10. http://en.wikipedia.
org/wiki/NTFS

“Technical Note TN1150: HFS Plus Volume 11.
Format”. Apple Developer Connection.
March 5, 2004. http://developer.apple.com/
technotes/tn/tn1150.html.

 Schmuck, Frank; Roger Haskin (January 2002). 12.
“GPFS: A Shared-Disk File System for Large
Computing Clusters” (pdf). Proceedings of
the FAST’02 Conference on File and Storage
Technologies: 231-244, Monterey, California,
USA: USENIX. t

“Apple Ships Xsan Storage Area Network File 13.
System”. Apple Inc.. http://www.apple.com/pr/
library/2005/jan/04xsan.html.

Isilon Systems OneFS product literature: 14.
ht tp://www.i s i lon.com/products / index.
php?page=software _ OneFS

The wikipedia entry on NFS: 15. http://en.wikipedia.
org/wiki/Network _ File _ System _ (protocol)

The Lustre filesystem community Wiki: 16. http://
wiki.lustre.org/index.php?title=Main _ Page

The Apache Hadoop project: 17. http://hadoop.
apache.org/core/

J. Dean and S. Ghemawat, ‘MapReduce: 18.
Simplified DataProcessing on Large Clusters,’
in OSDI 2004: Sixth Symposium on Operating
System Design and Implementation, 2004.
[Online]. Available: http://labs.google.com/
papers/mapreduce-osdi04.pdf

Simone Leo et al (2008), ‘Parallelizing bio-19.
informatics applications with MapReduce’,
poster presented at the Cloud Computing
Applications 2008 Conference, available at:
ht tp://www.cca08.org/papers/Poster10-
Simone-Leo.pdf

