Brazilian EMBnet Node: progress Report

Ana Tereza Vasconcelos¹, Wim M. Degrave², Goran Neshich³

¹Laboratório Nacional de Computação, Científica Laboratório de Bioinformática, Quitandinha Petrópolis, Rio de Janeiro (Brazil)
²Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, Brazil
³Brazilian Agricultural Research Corporation (EMBRAPA) and UNICAMP’s Department of Biology, Campinas, Brazil

Mission

The Brazilian EMBnet node conducts research and development in Bioinformatics and Computational Biology, with emphasis on creating and applying computational and mathematical methods and models for solving biological problems. The Brazilian node is formed by a network of three institutions: The National Laboratory for Scientific Computation (LNCC - Petrópolis), the Oswaldo Cruz Foundation (Fiocruz – Rio de Janeiro) and Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA - Campinas). The network maintains and develops databases and tools in bioinformatics and computational biology to supply the needs of thematic networks and national and international collaborative projects, organizes training courses on several levels, and promotes technology and innovation.

National laboratory for scientific computation - LNCC, Laboratory for Bioinformatics

Dr. Ana Tereza Vasconcelos.

Infrastructure

Computational

The LNCC, one of the National Institutes of the Ministry of Science and Technology, has at present the following available computational resources: Sunfire 6800 with 24 processors and 24 Gb of memory, SunFire 3800 with 4 processors and 32 Gb of memory, SGI Challenger with 8 processors and 2 Gb of memory and 2 Sun Enterprise 450, offering a set of tools with modern technology that is up-to-date and ready for the development of applications that demand high levels of computational and scientific resources. The computational resources of the LNCC also include 90 Unix workstations (IBM, Silicon Graphics, Sun and Linux), 350 PCs and 100 printers. The external network of the LNCC is made of two links, one of 34 Mbps (megabits/second) to the POP-Rio de Janeiro of the RNP which is operated by the LNCC in its old headquarters and another of 2 Mbps to the REDERIO. The rate of use of the two links (Rio de Janeiro-Petrópolis) is of approximately 50%. Expansion of the links with the REDERIO aiming at the interconnection with the REMAV-Rio de Janeiro (High-Speed Metropolitan Network) is under study. Two communication servers for dialled access, each having 30 digital lines (total 60 lines) should also be at our disposal and will be located in Petrópolis and in Rio de Janeiro (POP-Rio de Janeiro).

The platform of the internal network of the LNCC is composed at present of 2 CISCO Catalyst switches, model 6509, interconnected to 4 Gbps, interconnecting two clusters of Catalyst switches, model XL-2909, with FEC connections of 800 Mbps in each cluster. The master switches of each cluster have 2 expansion slots available, besides several 10/100 Mbps ports reserved for expansions. In total, the LNCC has approximately 500 10/100 Mbps ports in the clusters of switches interconnecting the workstations of its technical/scientific staff. The cabling is certified and warranted by Lucent Technologies for a period of 15 years. The switch connections are made of fiber optics and the links from these to the rooms (stations) are made in category 7 twisted-pair cables.

Genomic

The Computational Genomics Unit Darcy Fontoura de Almeida is associated to the Laboratory of Bioinformatics of the National Laboratory of Scientific Computation – LNCC. This Unit, coordinated by Ana Tereza Ribeiro de Vasconcelos, has the purpose of integrating the activities of high-throughput DNA sequencing and bioinformatics into a single center, thus allowing for the best possible use of the data resources.
generated by the new 454 GS FLX sequencer of Roche. Inaugurated in September 19, 2008, the Computational Genomics Unit is a center of excellence of national reference in high-throughput sequencing. At present, the 454 GS FLX sequencer is the only one in South America that follows all the specifications of the Roche manufacturer. The laboratory can also count with an Agilent Bionalyzer 2100, a Nanodrop 3000 fluorometer, a Genomic Solutions HydroShear, a Qiagen TissueLyser, centrifuges, a Beckman Coulter Z1, Veriti thermocyclers and other support equipment.

Projects with financial support

2008 - Actual: Genômica Computacional e o Sequenciamento Parcial do Genoma de Trypanosoma Cruzi

Financial support: Fundação Carlos Chagas Filho de Amparo às Pesq. do Estado do Rio de Janeiro-FAPERJ

2008 - Actual: apoio para a manutenção e instalação da unidade multimodalidade de genômica computacional

Financial support: Fundação Carlos Chagas Filho de Amparo às Pesq. do Estado do Rio de Janeiro-FAPERJ

2008 - Actual: Rede Sul Americana e Iberoamericana de Bioinformática (Red SurAmericana e Iberoamericana de Bioinformática)

Financial support: Nacional de Desenvolvimento Científico e Tecnológico-CNPq

2008 - Actual: Rede Nacional de Sequenciamento de DNA - Projeto Genoma Brasileiro: Determinação de Genomas Relevantes para a Saúde Humana

Financial support: Ministério da Ciência e Tecnologia-MCT, Ministério da Saúde-MS

2008 - Actual: Rede Brasileira de Pesquisas sobre o Câncer - RBPC

Financial support Ministério da Saúde-MS e Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq

2007 - Actual: Biotecnologia - Insumos para Genômica e Proteômica

Financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq

2007 - Actual: Prospeção de novos genes com potencial biotecnológico

Financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq

2006 - Actual: Estudo multicêntrico para caracterização molecular das hemofilias A e B e determinação do estado de portador de hemofilia no Brasil

Financial support: Ministério da Saúde-MS

2006 - 2008: Brazilian Microbiological Resource Center (BMRC)

Financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Empresa Brasileira de Pesquisa Agropecuária-Centro Nac. de Pesq. de Soja-EMBRAPA SOJA

2006 - Actual: CTpedia database

Financial support: Ludwig Institute for Câncer research

2004 - Actual: HAMAP BRAZIL - PAthogenic Proteins Annotation Project

Financial support: Swiss Institute for Bioinformatics

2004 - 2008: Projeto Genômica comparativa de Xylella fastidiosa

Financial support: Ministério da Ciência e Tecnologia-MCT, Universidade de São Paulo-USP

2004 - Actual: Fixadores de Nitrogenio

Financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Empresa Brasileira de Pesquisa Agropecuária-Centro Nac. de Pesq. de Soja-EMBRAPA SOJA

Courses

- Genômica e Bioinformática, 2008.
- Bioinformática I - Banco de dados do ponto de vista biológico, 2007.

Publications

22. THOMPSON, F., Bruno Gomez-Gil, VASCONCELOS, A. T. R., Tomoo Sawabe Multilocus sequence analysis reveals that Vibrio harveyi and V. camp-
Team members:
- Wim M. Degrave
- Antonio Basilio de Miranda
- Thomas Dan Otto (currently at the Sanger Institute, UK)
- Fábio F. Mota - Technologist
- Mark Catano - PhD student in Cellular and Molecular Biology
- Ana Carolina Guimarães - PhD student in Cellular and Molecular Biology
- Flávio Engelke - Master student in Biomedical Sciences

Activities
Bioinformatics services: support for genomics and proteomics platforms at Fiocruz, genome sequencing projects, software and application development; installation and upgrading of software; construction, implementation and updating of databases; design and maintenance of information services; organization of training courses and on-line training to users, mostly within graduate and postgraduate programs; contribute to specific research projects through software and database development; disseminate bioinformatics as a tool and as a research and development discipline. The Bioinformatics node contributes to improvement of public health and the development of new technologies and tools; generate a potential economic impact, because it contributes to the patentability in research projects and innovations, and has captured external resources for this purpose.

Infrastructure
The main infrastructure of the unit is currently comprised of a dozen of smaller dedicated servers. Two larger servers are to be included in 2010. Fiocruz has an extensive network of fiber optics,
linking several thousands of PCs in the different Institutes that comprise the Foundation, and is connected to the RNP and REDERIO through high speed links. Fiocruz counts with several additional bioinformatics groups performing research and development in fields such as genomics, statistics and epidemiology, molecular modeling, georeferencing, systems biology etc., and counts with post-graduate courses in Computational and Systems Biology.

Special Services offered:
- Bioinformatics databases and applications
- Genome assembly
- Web servers
- General sequence analysis
- Proteome analysis
- Data processing

The most common software packages for sequence assembly and database are available.

Products developed by the team of the platform:
- BioParser * - Analyzer/parser for all varieties of BLAST and FASTA, with support for versions of BLAST with and without gaps.
- SQUID * - Friendly local grid environment for the use of BLAST and FASTA programs.
- GenoMycDB - Database for information related to the genome and proteome of mycobacteria
- REReP - Method to facilitate the assembly of genomes, based on the detection and filtering of seqs. repetitive (applicable to data obtained by the method of Sanger and probably pirosequencing)
- AnEnPi - Tool for clustering, similarity search, identification of cases of functional analogy and reconstruction of metabolic pathways.
- ProteinWorldDB - Database indexes of similarity between protein sequences of hundreds of genomes – http://www.proteinworlddb.org

Courses
- Computational analysis of sequence and protein (IOC 26051)
- Origin, Structure and Evolution of prokaryotic genomes (IOC 26052)

Recent new collaborations
- Analysis of the genome of Streptococcus pneumoniae, in collaboration with BioManguinhos (Dr. Marco Medeiros)
- Development of a multiplex PCR for distinguishing species of the genus Wolbachia, Ehrlichia, Rickettsia and Anaplasma, in collaboration with Dr. Agnes Rossi (top Mar/2009 - Ready for testing on bench)
- Analysis of genes of Vibrio mimicus, in collaboration with Dr. Ana Carolina Vicente (top Sep/2009)

Publications
Education
We run a course for two major universities and their program for bioinformatics – UFMG and Unicamp. Both are well attended and teach mostly structural computational biology, but also some tools and DBs from sequence – one dimensional world.

During the last three years we offered total of 3 courses for more than 50 students, mainly covering material from structural computational biology and structural bioinformatics.

Database construction
We constructed a first Latin American database that was registered in the NAR DB issue. Since then, we aggregated many parameters into that same STING_DB, making it the largest of its kind available for access over the web. Currently this database contains more than 28.5×10^9 registers (61,000 PDB files, ~130,000 chains, ~300AA/chain, 731 descriptors/AA).

Software development
We also published and posted on the Web STING suite of software programs for educational and analytical purposes. Analysis STING protocols are designed for routine use and can generate advanced reports about structure, sequence, function, stability and binding of proteins and their ligands.

Projects
- Study of Macromolecular Communication in Homo and Hetero complexes through their interfaces Unicamp-IB+Embrapa/CNPTIA. Large scale protein function prediction tools* Genoscope, France + mbrapa/CNPTIA
- “TargetsDB - Base de dados de alvos terapêuticos validados” UFMG + Embrapa/CNPTIA
- Automatic prediction of protein-protein interfaces based on a novel hydrophobicity index studies Unicamp-IB + Embrapa/CNPTIA
- Free Bioinformatics Technology consolidation and application in Biomedicine (FreeBiT) Red Iberoamericana de Bioinformatica + Embrapa/CNPTIA
- “Druggable proteins: Identification of potential therapeutic targets for development of agrochemicals, veterinary and medical drugs and vaccines for treating plant and animal diseases important for agriculture and live stock” UFMG+USP+UNICAMP+UNIFEI+EMBRAPA. GenoProtPlus SUN Computers e EMBRAPA
• Molecular modeling and structural analysis of the protein twitching motility a product of XF1633 gene of Xylella fastidiosa. EMBRAPA - CNPqTIA

Publications
6. MOUTRAN, Alexandre; BALAN, Andrea; PEREZ, Carolina Santacruz; FERREIRA, Rita Carle; RAMOS, Carlos; FERREIRA, Luís Carlos Souza; NESHICH, Goran: "Crystallographic structure and substrate-binding interactions of the 3 molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri."
7. R. C. Togawa, C. Ribeiro, I. Mazoni, T. Pelligrinelli, and NESHICH, Goran: " The Table of Interface Forming Residues as the Specificity Indicator for Serine Proteases Bound to Different Inhibitors" Accepted: BIOCOMP 08, 2008.

Chilean EMBnet node: progress report

J. Cristian Salgado
Universidad de Chile, DCC - Escuela de Ingenieria, Dept. of Computer Science, Santiago, Chile

In the past three years we have held a large number of activities related to bioinformatics and Systems Biology, which have had a big impact on the local scientific community. We have organized two mathematical modeling courses (1-2 weeks) aimed at the national biological research community:

• the first one, Mathematical Modelling of Biological Systems, was offered in 2008 by local instructors with a solid background on biology, mathematics and computer science and was attended by over 70 participants;
• the second was an advanced course on Mathematical Models in Biology, was given by Benoit Perthame from Laboratoire J.-L. Lions, UPMC/INRIA, and it was attended by over 20 participants;
• in addition, we are planning on extending these outreach activities and offer a regional Latin American Systems Biology course next year (2010).

During this period, we have been awarded a major national grant (1 M$ USD/yr) for the creation of the Institute for Cell Dynamics and Biotechnology: A Centre for Systems Biology (http://www.icdb.uchile.cl/icdb). This institute is composed by scientists whose background and area of expertise is very diverse. There has been a tremendous amount of cross-fertilization between the scientists participating in this institute, leading to a large number of collaborations, such as: