
Abstract

Sequence variants of human mitochondrial DNA (mt DNA) have been implicated in a variety of disorders 
and conditions. Massive parallel sequencing is becoming increasingly popular due to its efficiency and cost-
effectiveness. In relation to acquiring significant sequence information like levels of heteroplasmy in mt DNA, it 
offers a marked improvement compared to previous methods used. Here we describe a variant calling pipeline 
for human mitochondrial DNA using Next Generation Sequencing (NGS) data obtained by enriching the sample 
only for mitochondria prior to sequencing.

Introduction
Human Mitochondrial (mt) genome is a double-stranded 
and a closed circular DNA molecule of 16,569 base pairs 
that represent <1% of total cellular DNA with each 
mitochondrion harboring 2-10 copies of mitochondrial 
DNA (mtDNA) molecules (Holt et al., 2007; Veltri 
et al., 1990). It codes for a total of 37 genes, including 
the 13 involved in electron transport and oxidative 
phosphorylation, 2 coding for 16rRNA and 12sRNA, 
and 22 coding for other mitochondrial transfer RNAs 
(tRNAs) needed for protein translation, thus proving its 
essential role in cellular function. (Anderson et al., 1981). 
The presence of dissimilar sequences across different 
mitochondrial DNA molecules, from a single source, 
is referred to as heteroplasmy, which could conform to 
varying degrees among several tissues or different cells 
of the same tissue (Melton, 2004; Wong et al., 2005). 
Compared to the nuclear genome, the mt genome has 
approximately 10 times higher mutation accumulation 
rate (Elmore, 2007), and it causes maternally inherited 
mitochondrial dysfunctions in a range of diverse 
disorders (mtDNA diseases) including diabetes mellitus, 
hypertension, Alzheimer’s disease, heart diseases and 
cancer (Huang, 2011). There’s also increasing evidence 
suggesting the association of somatic variants of 
mtDNA to other traits like ageing and cancer (Schon et 
al., 2012). Thus, the characterisation of mitochondrial 
genome sequences is necessary for the molecular 
diagnosis of associated conditions. However, mtDNA 

analyses methods like PCR-restriction fragment length 
polymorphism (PCR-RFLP) analyses, Affymetrix’s 
MitoChip, and even the gold standard Sanger sequencing 
fail to detect heteroplasmy under 10% (Mertens et al., 
2019). Further, these methods are hindered by the 
limited number of targets they can scan in a single run, 
highlighting the need for an accurate, cost-effective, and 
more sensitive method to study mtDNA.

Next Generation Sequencing and mtDNA 
analysis
Massive parallel sequencing has revolutionised the 
sequencing technology in recent years and proves ideal 
for small genome sequencing due to its high throughput 
and low cost (Yao et al., 2019). Level of heteroplasmy 
detection could be significantly improved through these 
methods due to resulting high coverage and small size 
of the human mitochondrial genome. Although the 
different NGS technologies may use different methods 
in generating raw data, their final output is nucleotide 
base calls producing a huge number of 50 – 300 bp short 
reads (Mardis, 2013), usually combined in a FATSQ file.

Bioinformatics pipelines are an intrinsic aspect 
of NGS data analysis, to detect genomic alterations 
derived from these massive amounts of raw sequence 
data. The computationally intensive and complex nature 
of NGS data analysis makes many biologists who lack 
understanding of these computational techniques shy 
away from personally analysing raw sequence data (Roy 
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et al., 2018). Several options are available to facilitate 
the analysis of mtDNA data acquired through NGS. 
However, their use is constrained by various factors. 
For example, several available bioinformatics pipeline 
frameworks like MitoSeek, Mtoolbox, are difficult to 
install, certain online servers like mit-o-matic, have 
limited input volumes or generate unreliable results 
(Weissensteiner et al., 2016) In this paper, we present 
a bioinformatics pipeline for analyzing NGS data of 
targeted sequencing of the mitochondrial genome, 
through a series of command line tools.

Methodology
Quality assessment 
When compared with Sanger sequencing, NGS acquire 
more errors as platforms face a variety of failures in 
chemistry and instrumentation, resulting in errors such 
as adaptor contamination, low-quality reads, and base 
call errors. To assure the conclusions derived through 
analysis are correct, it is necessary to eliminate these 
errors as downstream procedures fail to identify them 
(Pabinger et al., 2014; Cox et al., 2010; Dohm et al., 2008). 
In this protocol, FastQC (version 0.11.8) (Andrews, 
2010), the most preferred tool among the several tools 
available for checking the quality of raw data, was used 
for quality assessment. Upon assessment, this tool 
produces a report of useful information including quality 
score distribution across bases and across reads. Base 
quality score is an expression of base calling accuracy 
(Zhou and Rokas, 2014). A score of >20 is commonly 
referred to as the threshold for inclusion criteria of 
sequence reads, and removing sequences lower than 20 
is preferable. As a part of the quality control procedure, 
adaptor sequences and the sequences not meeting the 
defined standards were removed using the cutadapt 
(version 1.18) tool (Martin, 2011). Similarly, sequences 
that were significantly shorter and longer than average 
were removed as well.

Alignment
Alignment is the process where the previously quality 
controlled massive amount of short reads, usually around 
250 bp in FASTQ format, is mapped to the reference 
sequence that’s in FASTA format, in this scenario, rCRS 
Human Mitochondrial Genome Reference sequence 
of Genbank accession No. NC_012920.1 (Andrews 
et al.,1999). It is the paramount step of any variant 
calling pipeline as even a few inaccurate alignments 
could produce many false-positive variant calls. For the 
current pipeline, the BWA-MEM tool of BWA aligner 
(version 0.7.12, one of the popular aligners that is fast 
and facilitates indel identification, -r1039) was used 
(Li, 2013). BWA was also used for the indexing of the 
reference sequence that was downloaded from Genbank 
prior to alignment, and the resulting sequence alignment 
mapping (SAM) format file from the alignment between 
the reference sequence and trimmed sequences was 

converted to a binary alignment map (BAM) file using 
SAMtools (version 1.9) BAM is the default binary format 
for storing sequence alignment data (Li et al., 2009). 
Once the aligned BAM file is produced, alignment should 
be further refined. Accordingly, sorting and indexing 
of the BAM was also performed using SAMtools 
(version 1.9), through which BAM data is efficiently 
arranged and coordinate sorted, so the reads could be 
retrieved efficiently during further downstream analysis. 
SAMtools also compresses the aligned BAM file further 
before being used in deduplication (Li et al., 2009).

Removing/marking duplicates
Duplicate removal is also enabled through SAMtools 
(version 1.9). This additional refinement process is 
important to mitigate the effects generated by the over-
amplification of certain sequences. Duplicate sequences 
that are naturally present spanning the interested regions 
on DNA do not need to be removed. However, optical 
duplicates that are mistakenly read as separate clusters 
through signal capture software, when in reality they are 
generated by the same cluster, and the duplicates caused 
through PCR should be removed. PCR duplicates occur 
when the same amplified copies of one original fragment 
are identified as different fragments and further amplified 
through high throughput sequencing (Zhou and Rokas, 
2014). In the initial steps of the NGS process, mtDNA 
is fragmented for library preparation and amplified for 
enrichment. Therefore, the presence of PCR duplicates 
at some level is usual. But having overly propagated 
duplicates cause erroneous end results. If a sequence 
subjected to PCR duplication contains a variant, that 
variant call would be biased. To further worsen the final 
output, if an error had occurred during PCR it would be 
further inflated during high throughput sequencing and 
cause a false positive. Therefore, compared with other 
DNA sequencing projects, the effect of duplicates is 
detrimental for heteroplasmy level detection of mtDNA 
analysis. Through deduplication algorithms, the groups 
of duplicate reads are identified and that of the highest 
sum of base quality scores is marked as a single read 
(Goto, 2011; Pfeifer, 2017).

Base quality score recalibration
The last stage that produces the final output of variant 
calling is possible through several different software 
tools.  Just as many tools applied in different stages of 
the analysis, no single software could perfectly identify 
all variants in the genome of interest without false 
positives or negatives, however, according to a survey 
of variant analysis tools previously performed (Pabinger 
et al., 2014), Genome Analysis Tool Kit (GATK) by 
Broad Institute of Harvard and MIT (McKenna et al., 
2010; Heldenbrand et al., 2019) offers a satisfactory 
output for both germline and somatic variant calling. 
Prior to variant calling, Indel realignment and Base 
quality recalibration is the recommended practice.  In 
previous versions of GATK, local alignment tools like 
IndelRealigner were available for Indel realignment. 
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However, in the current version, GATK 4 realignment is 
no longer recommended (Heldenbrand et al., 2019). As 
per the GATK best practices pipeline (Van der Auwera 
et al., 2013), before the input files are processed through 
GATK tools, they should be preprocessed with utility 
software. Accordingly, a sequence dictionary for the 
reference file is created using CreateSequenceDictioanry 
tool by Picard (version 2.25.1), whereas the read group 
information of the input BAM file is assigned using the 
AddOrReplaceReadGroups tool also by Picard (version 
2.25.1), a step through which, all the reads of a single file 
are assigned into one read group. Sorting and indexing 
of this file, which is necessary for subsequent steps could 
also be integrated into the same command.

Owing to the systemic technical errors of NGS data 
processing, base quality score alone may not be a proper 
indication of true base call errors. To address this issue 
GATK has introduced base quality score recalibration 
(BQSR). According to the official website available 
at GATK1, BQSR is the machine learning algorithm 
introduced by GATK that enables improved overall base 
qualities, that subsequently increases the variant call 
accuracy. With the latest version of GATK, 4.2.0.0, the 
process involves two major steps. Initially, a model of 
covariation along with a recalibration table is produced 
on the BAM input from the previous step, with the 
BaseRecalibrator tool, based on an indexed VCF file of 
known variants and SNP’s downloaded from dbSNP for 
the respective reference sequence and various covariates 
including read group, machine cycle number, reported 
quality score, and nucleotide context. Secondly, using 
the ApplyBQSR tool, a new BAM output is produced 
with adjusted base quality scores, depending on the 
built model. Additionally, the effects of recalibration are 
assessed by building another model for the new BAM 
output with the BaseRecalibrator tool, and plots are 
generated with the AnalyzeCovariates tool to compare 
the effects of the process. It is noteworthy that the 
AnalyzeCovariates tool requires other tools installed like 
R libraries, ggplot2, gsalib, and reshape to function. 

Variant calling and filtering
Variant calling of Human mitochondrial genome is 
possible through the mitochondrial mode of GATK 
(version 4.2.0.0) Mutect2 (Benjamin et al., 2019).  
Through mitochondrial mode, it allows sensitive 
calling of short nucleotide variants and indels at high 
depths with local assembly of haplotypes. The output 
is a raw highly sensitive VCF call set. Due to various 
types of errors and biases in the data, it demand the 
generation of a high-quality set of variants. To identify 
false positives out of the original VCF files and acquire 
a balance between sensitivity and specificity, necessary 
filters should be applied through variant filtering. GATK 
(version 4.2.0.0) offers several filtering tools based on 
different strategies used (Pfifer, 2017; Van der Auwera 

1 h t t p s : / / g a t k . b r o a d i n s t i t u t e . o r g / h c / e n - u s / a r t i c l e s / 
360035890531-Base-Quality-Score-

et al., 2013). FilterMutectCalls is the recommended 
tool for this scenario (Benjamin et al., 2019) through 
which possible false-positive artifacts will be flagged in 
the output VCF by its ‘failed filter’ while the remaining 
would be marked as ‘PASS’ (Van der Auwera et al., 2013; 
Roy et al. 2018). With the SelectVariants tool, they can 
then be excluded from the final VCF output file.

Generating coverage plots and VCF file 
report
With SAMtools (version 1.9), coverage plots can be 
created for the final BAM output of GATK (version 
4.2.0.0). Additionally, with the DISCVRSeq (version1.21) 
tool, a VCF file report can be generated using a previously 
compressed and indexed final VCF file.

Determining heteroplasmy levels, con-
tamination, and haplogroup detection
High throughput sequencing has enabled the detection 
of heteroplasmy levels that are below 10%, which was not 
possible with previous sequencing methods (Mertens et 
al., 2019). mtDNA-Server (Weissensteiner et al., 2016), 
a free online data analysis server for mtDNA, reliably 
detects levels of heteroplasmy in NGS data 1% or above. 
The standalone version of mtDNA-Server, which can be 
locally installed, Mutserve (version 2.0.0-rc7) was used 
to detect the level of heteroplasmy in this pipeline and 
provided a sorted and indexed BAM as input.

Sample cross-contamination during next generation 
sequencing of mtDNA proves to be challenging at the 
data analysis phase as they may present themselves 
as low-level heteroplasmy (Dickins et al., 2014; Li et 
al., 2010). Haplocheck is a software tool developed to 
estimate the contamination level of mtDNA samples 
through mitochondrial phylogeny (Weissensteiner et 
al.,2021).  It can be used as a cloud service or be locally 
installed. Locally installed Haplocheck (version 1.3.2), 
was used in analyzing NGS data for contamination.

Distinct regions of the mtDNA genome sequence 
that group together, reflecting phylogenetic origin 
through different maternal lineages are defined as 
mitochondrial haplotypes. These haplotypes can 
be assigned to haplogroups that represent the main 
branching points of the mitochondrial phylogenetic tree 
as they show how specific SNPs or variations have been 
accumulated through a certain matrilineage (Pipek et al., 
2019; Samuels et al., 2006). Determining haplogroup in 
mitochondrial DNA sequence studies is important both 
to trace these lineages in human population genetics and 
to identify their various associations with diseases and 
health conditions. Haplogrep 2 (Weissenteiner et al., 
2016) is a popular tool used to classify haplogroups in 
NGS studies. Local installation of Haplogrep 2 (version 
2.1.25) was used to identify haplogroups of preferred 
VCF input files.
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Results
Variant Annotation and visualisation
Assigning related biological information to identified 
variants is defined as variant annotation. There are 
several computational tools for human mitochondrial 
DNA analysis. Query with these tools provide sequencing 
data against variant databases and designate a set of 
associated metadata including the location compared to 
the reference sequence, respective change in amino acid 
and cDNA sequence, prediction of functional effects, 
and their presence in various databases (Roy et al., 2018; 
Wadapurkar and Vyas, 2018). Variant Effect Predictor 
(VEP) (McLaren et al., 2016) by ENSEMBLE project is 
a tool available at http://www.ensembl.org/ that accepts 
the final VCF file as input and enables the download 
of the annotated file in several formats. Via integrating 
SIFT (Kumar et al., 2009) and Polyphen (Adzhubei et 
al., 2010) it allows prediction of functional effect, as well 
as the discovery of genomic location, substitution effect 
of amino acid, and codon change. A txt format output, 
downloaded from VEP website, following annotation 
of the final VCF generated with the current pipeline is 
given in Supplementary file 52.

The final step of NGS variant calling pipelines is 
the visualisation of these data using genome browsers 
and visualisation tools. This task was performed with 
Integrative Genomics Viewer (IGV version 2.9.2) 
2http://journal.embnet.org/index.php/embnetjournal/article/
downloadSuppFile/1007/1007_supp_5

(Robinson et al., 2011; Thorvaldsottir et al., 2013) 
provided by Broad Institute of Harvard and MIT. It is 
a user-friendly and high performing interactive tool 
for exploring NGS data. By enabling read alignment 
examination, this step allowed further confirmation of 
called variant through visual estimation of it being true 
or a sequencing artifact. Additionally, through this step, 
more associated information of variants like mapping 
quality and variant impact acquired could be viewed 
individually (Figure 1).

Discussion
Limitations and perspective
Initially, it is important to notice that the sensitivity of 
heteroplasmy level detection correlates with increasing 
coverage depths (Holland et al., 2011; Zhang et al., 
2012). At the same time, data generated with higher 
depths of coverage requires significant computer storage 
and advanced computers for data handling without 
compromising efficiency. Secondly, a signal from a very 
low-frequency variant is not discernable from that of 
a sequencing error. Finding the right balance between 
precision and sensitivity during data analysis, holds key 
to identify these variants. As desired, during variant 
filtering with FilterMutectCalls, the level for -f-score-
beta argument could be adjusted between precision and 
recall, whereas 1 is the default value, 0.5 indicates higher 
precision over recall, and 2 indicates the higher recall over 
precision. However, other than bioinformatic analysis, 
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Figure 1. An A>G base substitution at position 8860 of human mitochondrial genome, aligned with rCRS Human Mitochondrial 
Genome Reference sequence zoomed for 12 base pairs length in IGV 2.9.2.
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criteria for quality control are also a limiting factor for 
detecting levels of heteroplasmies. It has been found 
that optimal conditions for primary PCR amplification 
and library preparation for high throughput sequencing 
are critically important as substandard conditions result 
in inflated variant frequencies (Mertens et al.,2019). 
Evidently, maximum accuracy in variant calling through 
NGS data demands high proficiency from laboratory 
practices to computational analysis. Nevertheless, despite 
the challenges present in the field of mitochondrial 
high throughput sequencing data processing, with 
rapidly improving and newly developing analysis tools 
coupled with other usual benefits offered via all massive 
parallel sequencing methods, NGS is likely to become 
predominant over previous sequencing methods in the 
foreseeable future.
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