
Abstract

Yellow Fever is a viral hemorrhagic disease that is transmitted mainly through arthropods with high mortality rates. 
Yellow Fever Virus (YFV) is an enveloped positive sense single-stranded RNA virus, member of the Flaviviridae 
family and the Flavivirus genus, and is endemic in countries of Africa and South America. However, recent cases 
of infection in North America, Asia and Europe are highlighting the potential risk of an outbreak with no effective 
treatment available and the urgent need to develop potent antiviral agents against the YFV. In this direction, a 
range of specific modulators were designed and in silico evaluated in an effort to hinder the enzymatic activity 
of the YFV helicase as a prominent pharmacological target. Following a structure-based rational drug design 
pipeline, a phylogenetic analysis of Flaviviridae viruses and an in-depth evolutionary study on the Yellow Fever 
Virus helicase has provided invaluable insights into structural conservation and structural elements and features 
that are vital for the viral helicase function. Using comparative modelling and molecular dynamics simulations 
the YFV helicase-ssRNA complex was established, and the specific molecular interactions and physicochemical 
properties of the complex could be analyzed and used towards the designing and elucidation of a specific YFV 
3D pharmacophore model. A high throughput virtual screening simulation was conducted to assess a set of in-
house maintained low molecular weight compounds as bioactive inhibitors of the YFV helicase enzyme. The in-
silico study described herein, could pave the way towards the designing and more efficient screening of potential 
novel modulator compounds against the YFV as well as attest and designate the NS3 helicase as an antiviral 
pharmacological target of uttermost value and potential.

Introduction
The viral family Flaviviridae comprises the genera 
Flavivirus, Hepacivirus, Pestivirus, and the Unclassified 
genus, and includes numerous important human and 
animal pathogens. The most common pathogens of the 
genus Flavivirus are Tick-borne encephalitis viruses, 
Dengue virus (DENV), Yellow fever virus (YFV), West 
Nile virus (WNV) and Zika virus (ZIKV) and are 
transmitted mainly by arthropods. YFV is transmitted 
by the mosquitoes Aedes aegypti and Haemagogus 
leucocelaenus. The treatment and management of 
flaviviruses’ infection is not 100% effective, even in cases 
where vaccines are available. It is thus highly important 
to study these viruses in terms of their genetic material 
and mechanisms of infection and reproduction in order 

to find efficient ways for their constrain in case of an 
outbreak (Best, 2016). 

The small, enveloped virions of the different 
members of the Flaviviridae family contains a single-
stranded, positive-sense RNA genome of about 9.5–12.5 
kb. Their genome consists of a single, long open reading 
frame (ORF), flanked by untranslated regions (UTRs) 
at 5’ and 3’ ends. Extensive studies on sub-genomic 
Flavivirus RNA replicons have revealed that the non-
structural (NS) proteins, which are encoded by the 
C-terminal part of the polyprotein, play a crucial role in 
viral RNA replication. Accordingly, these proteins are 
assumed to form replication complexes in conjunction 
with genomic RNA and possibly with other cellular 
factors (Best, 2016; Chambers et al., 1990). Inhibition of 
viral proteins, mainly NS3 helicase and NS5 polymerase, 
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is becoming increasingly popular (Papageorgiou et 
al., 2016; Vlachakis, 2021). More specifically, the NS3 
protein is a multifunctional polypeptide and encodes 
three enzymes with different functions including a 
serine protease, a NTPase and an RNA helicase. The 
RNA helicase is encoded by the C-terminal domain 
of the NS3 protein (aa 180-618) and belongs to the 
helicase superfamily 2 (SF2). Its structure consists of 
three subdomains, where subdomains 1 and 2 contain 
eight conserved motifs essential for RNA binding, ATP 
hydrolysis and structural  stability (Fairman-Williams 
et al., 2010; Pyle, 2008) adopting the RecA-like fold 
(Rao and Rossmann, 1973), and subdomain 3 forms 
the single-stranded RNA binding tunnel. Subdomain 
3 also mediates the interaction between NS3 and NS5, 
and the disruption of this interaction is also considered 
a powerful and effective strategy for designing antiviral 
compounds (Tay et al., 2015). Viruses carrying an 
impaired NS3 helicase gene cannot reproduce properly, 
proving the essential role of NS3 helicase activity in virus 
replication.

Viral helicase activity is essential for the virus 
during its reproductive process. NS3 protein appears to 
be a potential pharmacological target for inhibiting YFV 
replication (García et al., 2017) and antiviral strategies 
aiming for flavivirus helicase inhibition has been 
implemented in various cases (Lim et al., 2013; Luo et al., 
2015). Although rare reports of NS3 helicase inhibitors 
have been reported to date, the presence of halogenated 
benzenes that inhibit WNV helicase (Sampath and 
Padmanabhan, 2009) and ivermectin, an antiparasitic 
drug for helminths, that inhibits JEV and YFV helicases, 
are reported (Lai et al., 2017; Mastrangelo et al., 2012). 
In addition, ST-610 and suramin have been reported 
as DENV helicase inhibitors (Basavannacharya and 
Vasudevan, 2014; Lim et al., 2013). Compound ML283, 
which has been shown to act as an inhibitor of HCV 
and DENV helicases and pyrrolone, acts as a helicase 
inhibitor for both DENV and WNV (Sweeney et al., 2015). 
Although increasingly more studies are being conducted 
at the development of inhibitors for viral helicases, the 
lack of specific pockets in RNA and NTP binding sites 
poses a significant problem in the process as significant 
toxicity may occur, as compounds targeting these sites 
may also to target many similar cellular proteins with 
helicase or NTPase functions. In addition, another 
problem in the development of high affinity and potency 
inhibitors is the inherent flexibility of motor proteins, 
however allosteric inhibition still remains an attractive 
idea for inhibitor design (Li et al., 2013). In conclusion, to 
date no helicase inhibitor has been approved for clinical 
usage, which may be due to the above limitations in the 
process of in-silico drug development.

Sequence alignments of the Yellow Fever viral 
helicase identified several conserved sequence motifs 
that are important for biological functions. So far, the 
crystal structures of helicases from various RNA viruses 
have been determined, including the helicases from 
Yellow Fever Virus (Wu et al., 2005), Hepatitis C virus 

(Yao et al., 1997), Dengue virus (Luo et al., 2008a), Zika 
virus (Tian et al., 2016), and Kunjin virus (Mastrangelo 
et al., 2007). In the present work, the three-dimensional 
structure of the helicase enzyme of Yellow Fever virus in 
complex with a ssRNA molecule was predicted through 
comparative modelling and a 3D pharmacophore was 
developed in order to scan and detect specific helicase 
inhibitors with antiviral potential.

Methods
Sequence Alignment and Phylogenetic 
Analysis
The amino acid sequence of Yellow Fever viral helicase 
was obtained from the GenBank database (accession no.: 
NC_002031, entry name: Yellow Fever virus, complete 
genome). All available sequences of Flaviviridae NS3s 
were collected from the NIAID Virus Pathogen Database 
and Analysis Resource (ViPR) (Pickett et al., 2011) and 
the NCBI RefSeq database. Representative sequences 
were selected and sequence alignment was performed 
using the ClustalO algorithm in the Jalview program 
(Waterhouse et al., 2009a). The phylogenetic trees were 
constructed with the Neighbor Joining algorithm (Saitou 
and Nei, 1987) and visualization was performed using 
iTol1 and Jalview software (Waterhouse et al., 2009b). 

Energy Minimisation
Initially, available structures of Flaviviridae helicases 
were queried in the RSCB Protein Data Bank and a 
total of 110 structures were identified. 17 representative 
structures from each species were selected and 
structural studies were performed to optimize and 
evaluate the three-dimensional (3D) structure of the 
X-ray determined YFV helicase (PDB ID: 1YKS) and the 
other viral helicase structures. Energy minimization was 
used to remove any residual geometrical strain in each 
molecular system, using the CHARMM27 forcefield 
(Foloppe and MacKerell, 2000). Sequence alignments 
and structural superpositions were performed using the 
ClustalO algorithm (Sievers et al., 2011) and the MOE 
software (Group, 2019) respectively.

Molecular electrostatic potential (MEP)
Electrostatic potential surfaces were calculated by 
solving the nonlinear Poisson–Boltzmann equation 
using the finite difference method as implemented in the 
PyMOL Software (Schrödinger, 2020). The potential was 
calculated on grid points per side (65, 65, 65) and the 
grid fill by solute parameter was set to 80%. The dielectric 
constants of the solvent and the solute were set to 80.0 
and 2.0, respectively. An ionic exclusion radius of 2.0 Å, 
a solvent radius of 1.4 Å and a solvent ionic strength of 
0.145 M were applied. Amber99 charges and atomic radii 
were used for this calculation. 

1https://itol.embl.de
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Model Optimization
Energy minimization was done in MOE initially using 
the CHARMM27 forcefield (Foloppe and MacKerell, 
2000) implemented into the same package, up to a RMSD 
gradient of 0.0001 to remove the geometrical strain. The 
model was subsequently solvated with SPC water using 
the truncated octahedron box extending to 7 Å from 
the model and molecular dynamics were performed 
after that at 300K, 1 atm with 2 second step size and for 
a total of ten nanoseconds, using the NVT ensemble in 
a canonical environment. NVT stand for Number of 
atoms, Volume and Temperature that remain constant 
throughout the calculation. The results of the molecular 
dynamics simulation were collected into a database by 
MOE and can be further analyzed. 

Model Evaluation
The produced models were initially evaluated within the 
MOE package (Group, 2019) by a residue packing quality 
function, which depends on the number of buried non-
polar side chain groups and on hydrogen bonding. 

High-Throughput Virtual Screening and 
in-silico de novo drug design
A 3D pharmacophore model was constructed using 
the Pharmacophore tool in MOE (Group, 2019) 
and representative pharmacophoric features were 
selected based on the ssRNA-helicase interactions. 
High-throughput virtual screening simulations were 
consequently performed using the pharmacophore 
query tool in MOE. Novel molecules were in-silico 
designed based on the chemical structures of the 
WO/2009/125191 patent for HCV helicase inhibitors 
as scaffolds using the MOE BREED module and were 
consequently in-silico evaluated based on their binding 
free energies.

Results and Discussion
Description of the Yellow Fever virus hel-
icase structure
The Yellow Fever virus helicase model exhibits the 
structural features of known Flaviviridae helicases, and 
its structure has been experimentally determined by 
Wu et al. at 1.80Å resolution. Namely, the three distinct 
domains of helicases as well as the various motifs are 
structurally similar. The GxGKT/S motif in domain 1 is 
one of the most crucial motifs in Flaviviridae helicases, 
which is conserved to the same loop in kinases. It is a 
Walker A motif and binds  the β-phosphate of ATP 
(Saraste et al., 1990). The importance of this motif is 
highlighted in site directed mutagenesis studies by the 
fact that the mutant protein is inactive. Furthermore, 
the DExH motif is another crucial motif for the helicase 
function, which is responsible for the binding of the 
Mg2+–ATP substrate. According to studies in adenylate 
and thymidine kinases, an aspartate (Asp170) has been 

revealed that binds the Mg2+ helping in the establishment 
of the ATP optimum orientation for nucleophilic attack 
(Ruff et al., 1991). Finally, QRxGRxGR motif is also a 
crucial motif, the role of which is exceptionally crucial 
to the Flaviviridae helicase function as it is involved 
in nucleic acid binding (Gross and Shuman, 1996; 
Vlachakis, 2009). 

The Flaviviridae helicases have three domains in 
total, which are separated by two channels. The first and 
third domains are more interacting together in contrast 
with domain two. During the unwinding of double-
stranded nucleic acids, domain two undergoes significant 
movements compared to the other two domains. The 
channel between domains 3 and 1-2 accommodate the 
ssRNA during the viral unwinding process. The second 
domain contains an arginine-rich site where RNA binds 
to the helicase. The ATP and ssRNA sites were found to 
have been conserved on the Yellow Fever Virus helicase 
model (Luo et al., 2008b).

Comparative Modelling
The NS3 domain of Flaviviridae contains both the 
protease and the helicase coding regions. For this study, 
all available helicase structures of the Flaviviridae family 
were retrieved and filtered to remove redundant and 
duplicate structures (17 out of 110 in total) and were 
consequently minimized to remove geometrical strains 
in each molecular system. The optimized structures 
were aligned and superposed against the Yellow Fever 
virus helicase sequence. All the major helicase motifs, 
characteristic of the Flaviviridae family (Garg et al., 
2013) were found to be conserved both in sequence 
and structure and the constructed phylogenetic tree 
represents the relations between these viral species 
(Figure 1). 

The overall alignment showed a sequence identity 
that ranged from 18.2% (HCV helicase, PDB ID: 1A1V) to 
50.0% (Dengue virus 4 helicase, PDB ID: 5XC6), whereas 
sequence similarity of the sequences ranged from 28.4% 
to 66.8%, respectively. The alpha-carbon structural 
superposition of the Flaviviridae helicases against the 
Yellow Fever helicase exhibited major differences in 
their domain orientations and features and the resulting 
RMSD ranged from 1.663 Å to 7.970 Å. The most similar 
structures identified were the flavivirus helicases of Zika 
virus (PDB ID: 5MFX) and Dengue virus 4 (PDB ID: 
5XC6) (Figure 2).

To construct the ssRNA-helicase complex of the 
Yellow Fever virus, three available Flaviviridae helicase-
ssRNA complexes were used as templates (HCV PDB 
ID:1A1V; ZV PDB ID:5MFX; DV4 PDB ID:5XC6). The 
coordinates of the ssRNA substrates were transferred 
to the Yellow Fever helicase structure according to the 
superposed structures and the three resulting model 
complexes were evaluated. The models were subjected 
to energy minimization and molecular dynamics (MD) 
simulations in the presence of the ssRNA substrate. 
Based on structural stability and superposition of 
the consequent binding sites, the Zika virus helicase-
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ssRNA complex was chosen as the most appropriate 
template (Figure 3). Invariant residues of numerous 
motifs in the vicinity of the substrate in the Zika virus 
template structure were conserved in the Yellow Fever 
virus helicase structural model. Interactions of Yellow 
Fever helicase-ssRNA fragment were established with 

the backbone of the ssRNA fragment, that create non-
specific protein–nucleic acid interactions. The bases in 
the middle of the ssRNA do not appear to interact with the 
protein. The contacts of the enzymatic  receptor emerge 
mostly from domains one and two of the Yellow Fever 
helicase and, specifically, from loops between secondary 
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Figure 2. A: The Yellow Fever virus helicase in yellow (PDB ID: 1YKS) superimposed with the Zika virus helicase in red (PDB ID: 
5MFX) and the ssRNA substrate in magenta. B: The Yellow Fever virus helicase in yellow (PDB ID: 1YKS) superimposed with the 
Dengue virus 4 helicase in green (PDB ID: 5XC6) and the ssRNA substrate in blue.

Figure 3. The Yellow Fever helicase-ssRNA complex model. A: The 3-D model of the YF helicase in cartoon representation color 
coded by structural elements, with the modelled ssRNA fragment in ribbon and stick representation in dark green. B: The inter-
action map of the per-residue ssRNA interaction pattern from Ligplot for Yellow Fever virus helicase.

Figure 1. A: Sequence alignment between the representative Flaviviridae helicase sequences where all seven motifs are identified. 
B: A representative phylogenetic tree of the Flaviviridae helicase enzymes. C: Structural superposition of the 3-D structures of the 
representative Flaviviridae helicase enzymes. All seven major conserved motifs of Flaviviridae helicases have been color-coded 
and represented in CPK format.
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structure elements of the latter domains. LigPlot, which 
is a built-in module of MOE, was used for the drawing of 
more detailed (i.e. per residue) comparison of the ssRNA 
interaction pattern between the Yellow Fever virus 
helicase model and the Zika virus helicase structure.

The Yellow Fever virus helicase-ssRNA model 
reached a conformational equilibrium similar to that of 
Zika virus complex based on the 10ns MD simulations 
revealed. Thus, the viability of the comparative modelling 
of the Yellow Fever complex model was illustrated by 
these observations. The Yellow Fever complex model 
was compared with its template structure by calculating 
the root mean square deviations (RMSD) between 
equivalent atoms for the full MD course for evaluation. 
Large values of RMSD are indicative of systems of poor 
quality. The Cα RMSD of the Yellow Fever virus helicase 
model from the equivalent domains of the template 
structures was less than 0.65. This low value of RMSD 
reflected the high similarity of this structures since it 
seems to remain conformationally close to the template 
structure upon the minimization and the molecular 
dynamics simulation course that followed. 

The electrostatic potential surface was calculated 
to analyze the molecular surface of the simulated Yellow 
Fever virus complex. In order to compare directly the 
template structure used in this study, electrostatic 
potential surfaces were also calculated for the Zika virus 
helicase.  According to the results, the two helicases 
exhibited almost identical electrostatic surfaces and 
shared common features such as a negatively charged 
ssRNA entrance to the helicase tunnel verifying the 
validity of the model, which was found to share a 
similar electrostatic surface to its X-ray crystal structure 
complex template.

Pharmacophore modelling and in-silico 
de novo drug design
Following the establishment of the YFV helicase-
ssRNA model, the specific molecular interactions and 
physicochemical properties of the complex were analyzed. 
Based on the interactions identified, a 3-D dynamic 
pharmacophore model was created, to represent the 
interaction sites and nucleotide binding channel (Figure 
4). The pharmacophore consists of 5 sites representing 
two projected ring features, one site that represents an 
annotation of aromatic or hydrophobic centroid feature, 
one site of H-donor or acceptor feature, and one site of 
H-bond or anion features. The aromatic ring features 
are located at the edges of the binding site, whereas the 
rest of the features are found in the core of the channel. 
Novel compounds were in-silico designed based on 
evaluated molecules included in the WO/2009/125191 
patent, that encompasses molecular structures suitable 
for use in the treatment of HCV infection against the 
viral helicase. These compounds are symmetrical in 
their chemical structure and features accounting for 
the non-directionality of the nucleotide substrates. 
Based on their features and interaction properties, these 
molecules were used as scaffolds in the MOE BREED 
module and novel structures were generated. The 
module implements the crossover operator of genetic 
algorithms by evaluating important features of the 
original structures and combines fragments to produce 
novel new energy structures with similar orientation. The 
designed  structures preserve significant intramolecular 
interactions of the lead compounds. Based on the 
pharmacophoric representation of the binding site, 
the collection of the in-house maintained designed 
compounds were evaluated based on the London dG 
scoring function of the free energy of binding for each 
ligand. The pharmacophore-based high-throughput 
virtual screening identified top compounds that could 
act as bioactive inhibitors of the YFH helicase, disrupting 
the binding of single stranded RNA and obstructing the 
enzyme function.

Conclusions
Computer-based methodologies have become an 
integral part of the process of developing new drugs 
and repurposing of approved drugs against numerous 
diseases, as well as discover potential pharmacological 
targets. Developed applications for computational drug 
design are continuously upgrading and transforming 
traditional methodologies and pipelines, speeding up 
the research in antiviral strategies. In contrast to the 
traditional drug development methods which are time 
consuming and costly, computational drug design 
methods are widely used in the development of antivirals 
(Shaker et al., 2021).  These state-of-the-art techniques 
dock small molecules into macromolecular targets and 
predict the affinity and activity of small molecules (Dalkas 
et al., 2012). Interestingly, information technologies 
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Figure 4. The pharmacophore model for the RNA binding site 
of the Yellow Fever helicase structure. 5 pharmacophoric sites 
are represented, two projected ring features in both ends of 
the channel in dark green mesh, and three dynamic sites in the 
center of the channel, one aromatic or hydrophobic centroid 
feature in light green sphere, one site of H-donor or H-acceptor 
in blue sphere, and one site of H-bond or anion feature in yel-
low sphere.
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and machine learning algorithms are almost inevitably 
implemented in these new approaches to improve the 
efficacy of the prediction.

Especially nowadays that we are going through a 
period of public health crisis due to the SARS-CoV-2 
virus, the need to develop a quick and efficient pipeline 
for identifying potential antiviral drugs for future health 
risks is imperative (Basu et al., 2021). Members of the 
Flaviviridae family, are already endemic to African 
and South American countries. In addition, several 
cases of Flaviviridae outbreaks are being reported in 
Southern Europe and America (WHO, 7 May 2019). 
Numerous studies are being performed to detect 
effective drug targets in several viruses of this family, 
with nonstructural proteins, such as the viral protease, 
helicase and polymerase enzymes, being among the most 
prominent pharmacological targets (Vlachakis, 2021). 
Thus, computational methods for homology modelling 
and prediction of viral protein structures, such as bovine 
viral diarrhea virus (BVDV) (Xu et al., 1997), Classical 
Swine Fever virus (Li et al., 2018), Dengue virus and Zika 
virus (Ekins et al., 2016; Jain et al., 2016), are used to 
develop new promising viral inhibitors. 

In this study, the three-dimensional structure of 
the Yellow Fever virus helicase in complex with a single 
stranded RNA molecule was established based on 
available templates of helicase enzymes cocrystallized 
with ssRNA of the Flaviviridae family. An extensive 
comparative analysis was performed and the produced 
model using the structure of Zika virus helicase as 
template was optimized. The evaluation of the model 
was carried out successfully in terms of geometry, fold 
recognition as well as in terms of the criteria required 
for members of the viral Flaviviridae family. In addition, 
the Yellow Fever virus complex model was evaluated by 
molecular dynamics simulations and used to design a 
3-D pharmacophore, indicative of the RNA binding site 

properties. Novel chemical structures were designed 
through an in-silico approach that combines significant 
features of evaluated structures against viral helicases 
through the implementation of genetic algorithms. A 
pharmacophore-based screening was performed, and 
potent molecules were evaluated and recognized as 
potential inhibitors of the activity of the Yellow Fever 
virus helicase. Our applied methodology is paving the 
way towards the designing and more efficient screening 
of potential novel modulator compounds against the 
YFV, as well as attest and designate the NS3 helicase as 
an antiviral pharmacological target of uttermost value 
and potential.
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