
Abstract

Proteins have a significant role in all biological processes. The functional properties of proteins rely upon their 
three-dimensional structures. Over the last twenty years substantial advances in genomic technologies have 
enhanced our knowledge of the genetics of Alzheimer’s disease. To that end, the identification of mutations 
pathogenicity is still of vital importance. The methodology of the present research work focuses on the structural 
analysis of proteins related to Alzheimer’s disease and the comparative study to create groups with clear structural 
similarity and pathogenicity. To achieve that, three-dimensional descriptors (fpfh, rsd and 3dsc) were applied 
along with supervised machine learning classification methods. In total, 62 APP, 286 PSEN1, 68 PSEN2 and 25 
MAPT variants were evaluated in our study. The output of the methodology characterised thirty mutations that 
were unclear at the point of the data collection.

Introduction
Alzheimer’s disease (AD), the most common 
neurodegenerative disease, is identified by an insidious 
decline in cognitive and memory function. Furthermore, 
the number of AD is growing rapidly with the increase 
in the aging population (Saez-Atienzar et al., 2020). 
AD has a long prodromal phase, thus the onset of the 
pathogenetic changes until the appearance of clinical 
symptoms makes early diagnosis and treatment of this 
disease more demanding. The diagnosis criteria to define 
AD based on biomarker evidence currently include 
deposits of extracellular senile plaques in the cerebral 
cortex, the formation of neurofibrillary tangles, and 
neurodegeneration [AT(N)] classification system. As 
a result, there is still on-going research for improving 
the identification and classification of AD patients. To 
that end, the current research approach aims to deliver 
a methodology that can predict the classification of 
AD through the pathogenicity of the mutation. The 
pathogenicity is further mapped to clinical phenotypes 
that can support the patients’ stratification and 
the prediction of disease progression. The current 
methodology was applied to four proteins: APP, MAPT, 
PSEN1 and PSEN2. Three of them are associated with 
autosomal-dominant AD, amyloid precursor protein 
(APP) (OMIM 104760), presenilin 1 (PSEN1) (OMIM 
104311) and presenilin 2 (PSEN2) (OMIM 600759), while 
microtubule associated protein tau (MAPT) (OMIM 

157140) encodes the tau protein that is aberrantly 
phosphorylated in AD (Neuner et al., 2020).

Background
Based on the age of onset, AD is divided into two classes: 
early-onset AD (EOAD) with onset before 65, and late-
onset AD (LOAD) (Cuyvers and Sleegers, 2016); EOAD 
comprises about 5% to 10% of all AD patients and has 
strong patterns of familial inheritance (Zhu et al., 2015). 
EOAD has been linked to pathogenic mutations in one of 
three causative genes: APP, PSEN1, PSEN2. Up to now, 
over 400 known mutations on these genes have been 
described, while PSEN1 mutations are responsible for 
approximately 75% of genotyped families positive for a 
mutation, whereas APP and PSEN2 mutations account 
for 13% and 12%, respectively. Aβ peptides result from 
the cleavage of APP by β- and γ-secretases while PSEN1 
and PSEN2 are components of the γ-secretase complex 
(Haass and De Strooper, 1999).

APP encodes for the amyloid precursor protein, 
a transmembrane protein whose cleavage forms 
amyloidogenic Aβ peptides, key components of amyloid 
plaque. Most APP mutations are missense or nonsense. 
They are normally localised either within the domain 
that encodes the Aβ peptide, (amino acids 692–705) 
(93% of total mutations) or near the cleavage sites of 
secretases (amino acids 670–682 and 713–724) (Cacace 
et al., 2016; Dai et al., 2017). The overall effect of APP 

Structural analysis on mutations related to 
Alzheimer’s disease

© 2022 Avramouli et al.; the authors have retained copyright and granted the Journal right of first publication; the work has been simultaneously 
released under a Creative Commons Attribution Licence, which allows others to share the work, while acknowledging the original authorship 
and initial publication in this Journal. The full licence notice is available at http://journal.embnet.org.

Re
se

ar
ch

 P
ap

er
s

Article history
Received: 13 December 2021
Accepted: 15 December 2021
Published: 07 July 2022

 Page 1 of 6 
not for indexing e1011

Avramouli et al. (2022) EMBnet.journal 27, e1011
http://dx.doi.org/10.14806/ej.27.0.1011

Antigoni Avramouli, Eleftheria Polychronidou, Panayiotis Vlamos 

BiHELab – Bioinformatics and Human Electrophysiology Lab, Department of Informatics of Ionian University, Corfu, Greece
Competing interests: AA none; EP none; PV none

http://dx.doi.org/10.14806/ej.27.0.1011


mutations alters the processing by secretases and leads 
to increased generation and/or aggregation of amyloid, 
and/or a change in the ratio of specific Aβ peptides.

Presenilin-1 and presenilin-2 proteins are critical 
subunits of the γ-secretase complex responsible for 
processing of APP. PSEN2 is about 60% homologous to 
PSEN1, thus it is possible that they also have overlapping 
or similar activities. Similar to some mutations in APP, 
mutations in PSEN1 and PSEN2 typically result either in 
the overproduction of Aβ or an increased ratio of Aβ42 
over Aβ40 (Loy et al., 2014), triggering the formation 
of amyloid plaques and leading to the development 
of AD (Sun et al., 2017). Mutations in PSEN1 are the 
most common cause of EOAD; as of September 2021, 
over 350 mutations (some of unclear pathogenicity) 
have been identified (www.Alzforum.org). PSEN1 
mutations are estimated to contribute to around 80% 
of monogenic AD with complete penetrance and early 
age of onset (Giri et al., 2016). The exact mechanism 
through which mutations in PSEN1 result in dementia 
and neurodegeneration in EOAD remains unknown. 
In addition to their role in γ-secretase activity, PSEN1 
mutations may compromise neuronal function, affecting 
γ secretase activity and kinesin-I-based motility, thus 
leading to neurodegeneration (Giri et al., 2016). To 
date, 341 pathogenic mutations have been identified in 
PSEN1, most of whom are missense, while most of them 
occur in exons 5, 6, 7, and 8.

PSEN2 mutations are much rarer, with only around 
30 mutations identified in EOAD families (Cacase et al., 
2016). Mutations in PSEN2 alter the γ-secretase activity 
and lead to elevation of Aβ42/40 ratio in a similar manner 
to the PSEN1 mutation. Though PSEN2 is homologous 
to PSEN1, less amyloid peptide is produced by PSEN2 
mutations. In some people with PSEN2 mutations, 
neuropathological changes appear as neuritic plaque 
formation and neurofibrillary tangle accumulation 
(Giri et al., 2016). Furthermore, β-secretase activity is 
enhanced by PSEN2 mutation, through reactive oxygen 
species-dependent activation of extracellular signal-
regulated kinase (Park et al., 2012). PSEN2 mutations are 
very rare, and to date 84 pathogenic PSEN2 mutations 
have been detected worldwide. Moreover, in the 
pathogenic/likely pathogenic variants, missense variants 
are more common in PSEN1 than those in PSEN2. 
In general, most of the pathogenic AD mutations are 
located in exons 16–17 of the APP, exons 3–12 of PSEN1 
and PSEN2 genes (An et al., 2016). The localisation of 
mutations in AD causing genes leads to the assumption 
that the above exons are variant hotspots and need to be 
given priority when performing DNA sequencing (Zhao 
and Liu, 2017).

MAPT encodes the microtubule associated protein 
tau, a protein crucial to AD neuropathology. Even though 
MAPT mutations are not linked to familial forms of AD, 
SNPs near the MAPT locus are associated with AD risk. 
Interestingly SNPs in exon 3 act protectively against AD 
through decreased aggregation of tau protein (Neuner et 

al., 2020). Up to now 15 no disease-causative mutations 
have been linked with AD.

Methodology
The implementation methodology for this research work 
follows the approach of the Automated shape-based 
clustering of 3D immunoglobulin protein structures that 
was evaluated in the use case of chronic lymphocytic 
leukemia (Polychronidou et al., 2018). 

The proteins described were used as target proteins 
due to their important role in Alzheimer’s disease 
progression. The first step of the analysis was to identify 
the mutations related to the proteins. This information 
was extracted by the Alzforum - Mutations public 
database (Alzforum, 2021). This database is a repository 
of variants in genes linked to Alzheimer’s disease (AD). 
The database includes the three genes associated with 
autosomal-dominant AD (APP, PSEN1, PSEN2) and 
two genes associated with AD by way of genetics or the 
neuropathology of the encoded protein (TREM2 and 
MAPT). TREM2 was excluded from the analysis as the 
identification of the primary structure wasn’t feasible by 
the selected sources.

Evaluation of Protein Structures
Since the three-dimensional shape of most of the related 
proteins is not determined through experimental 
methodologies, established servers and online databases 
like Uniprot (UniProt Consortium, 2015), PolyPhen-2 
(Adzhubei et al., 2013), iTASSER (Yang et al., 2015) and 
PDBeFold (Krissinel, 2007) were evaluated for predicting 
the mutated structures and estimate the impact of the 
mutations to the 3-dimensional structure. A list of the 
selected methodologies is presented on the Table 1

These methodologies were used to better 
understand the structures and determine the structures 
for the mutated proteins. However, during the study, 
AlphaFold (AlQuraishi, 2019) was published as the 
latest state-of-the-art method for the prediction of 
protein structures. AlphaFold (Pereira, 2021), a neural 
network-based model, was validated in the challenging 
14th Critical Assessment of Protein Structure Prediction 
(CASP14) and was vastly more accurate than competing 
methods. The four protein structures were identified in 
the AlphaFold database and used as the target structures 
of this analysis. 

The following step in the pipeline was to create the 
structures for the mutations by protein. To achieve that 
the DynaMut server was used (Rodrigues et al., 2018). 
DynaMut implements two distinct, well established 
normal mode approaches, which can be used to 
analyse and visualise protein dynamics by sampling 
conformations and assess the impact of mutations on 
protein dynamics and stability resulting from vibrational 
entropy changes. DynaMut integrates our graph-based 
signatures along with normal mode dynamics to generate 
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a consensus prediction of the impact of a mutation on 
protein stability.

Through this approach the mutated structures were 
predicted for the four proteins of interest. Specifically, 
25 structures were retrieved by MART mutations, 62 
structures by APP mutations, 286 structures by PSEN1 
mutations and 68 structures by PSEN2 mutations. For 
each mutation, the description on Pathogenicity was 
also extracted from ALZforum and normalised into four 
categories: (1) Unclear, (2) Benign, (3) Pathogenic, (4) 
Not classified.

The objective of the study was to classify the 
resulted structures by Unclear mutations, through an 
AI/ML approach derived by the protein structures. To 
further analyse the mutated structures, an established 

methodology from the field of 3D object recognition was 
applied. The individual examination and combination of 
the local descriptors was applied to the 3D structures to 
extract the appropriate features for the comparison.

Three distance matrices were created by applying the 
FPFH, RSD and 3DSC descriptors. These matrices were 
the input of hierarchical clustering. The methodology 
was selected to supervise the separation of structures 
into clusters of structures with high similarity.

Indicative examples of hierarchical clustering output 
are presented here for the APP structure (Figure 1), 
PSEN2 structure (Figure 2), and the 3DSC descriptor. The 
optimal number of clusters for each protein-descriptor 
combination was determined through Silhouette 
analysis (Figure 3) and the clusters were analyzed based 
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Figure 1. Dendrogram resulted from the hierarchical clustering in APP protein using the 3DSC descriptor.

Figure 2. Dendrogram resulted from the hierarchical clustering in PSEN2 protein using the 3DSC descriptor.
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on their pathogenicity. The results from this analysis 
classified the PSEN1 mutations into two main clusters, 
Pathogenic and Non-pathogenic. Based on this analysis, 
110 mutated structures originally derived by Unclear 
pathogenic mutations, were classified as pathogenic. 

To further analyse the output, fan dendrograms were 
produced by also using the colors of the pathogenic types 
(Figure 4). Through this low-level cluster visualisation, 
the lowest height of the cluster was identified, and the 
groups of protein structures were analysed. In detail, 
six unclear structures were characterised for APP, nine 
unclear structures were characterised for PSEN2 and 
four unclear structures were characterised for MAPT.

3DSC descriptor supported the characterisation of 
the nine unclear or not classified mutations related to 

PSEN2. On MAPT, two mutations were characterised as 
Pathogenic (A90V, R5C) by RSD and 3DSC while R5C 
was classified as Benign from FPFH. R5H was classified 
as pathogenic by RSD and unclear by FPFH. Finally, 
A297V was classified as Benign by all methods and G86S 
as Benign only by 3DSC as the other descriptors didn’t 
reveal any specific cluster. In MAPT case FPFH and 
RSD didn’t perform as 3DSC in the cases of established 
pathogenicity (unclear cases), thus 3DSC is the descriptor 
that performed best in this protein. By following the 
output of the 3DSC descriptor, four new mutations can 
be characterised. 

In the case of APP, FPFH was the descriptor with 
the highest confidence and through this approach the 
method characterised six Not Classified mutations. This 
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Figure 3. Silhouette analysis on PSEN1 protein using the FPFH 
descriptor, to determine the optimal number of clusters.

Figure 4. Fan dendrogram of MAPT protein using the 3DSC 
descriptors.

Original Protein Mutation Pathogenicity 3DSC
PSEN2 A379D Not Classified -> Pathogenic 4
PSEN2 A415S Not Classified -> Pathogenic 1
PSEN2 K161R Not Classified-> Pathogenic 1
PSEN2 K82R Not Classified-> Pathogenic 4
PSEN2 L143H Not Classified-> Pathogenic 4
PSEN2 M174I Not Classified-> Pathogenic 3
PSEN2 M174V Benign 5
PSEN2 M239V Likely Pathogenic 3
PSEN2 M298T Uncertain Significance 1
PSEN2 N141D Not Classified-> Pathogenic 3
PSEN2 P123L Likely Pathogenic 1
PSEN2 S175F Uncertain Significance 5
PSEN2 T122P Likely Pathogenic 4
PSEN2 T421M Benign 5
PSEN2 V101M Unclear Pathogenicity -> Pathogenic 3
PSEN2 V214L Unclear Pathogenicity-> Pathogenic 4

Table 1. Results of PSEN2 pathogenicity prediction. The numbers on the descriptors column describes the groups that the pro-
teins were grouped with while the color describes the type of pathogenicity (green = Benign, red=Pathogenic). The new prediction 
of the not classified or unclear structures is included in the corresponding cell.
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number corresponds to ~20% of the total not classified 
APP mutations.

To support the analysis of the methodology, evidence 
for clinical phenotype, pathogenicity, neuropathology, 
and biological effect were also taken into consideration. 
For example, in APP - H733P mutation has not been 
classified, but the in-silico analysis suggests damaging 
effect (Guerreiro et al., 2010). This mutated structure was 
classified as pathogenic by this process as well. Hence, 
additional evidence beyond the experimental evaluation 
is generated by our suggested methodology.

Discussion
In summary, the phenotype of APP, PSEN1 and 
PSEN2 mutation carriers is heterogeneous. Applying 
pathogenicity prediction methodology to variants of 
unknown significance, we classified many of them as 
probably pathogenic. Variants of unknown significance 
were mainly identified in single individuals’ phenotype 
clinically with AD. Data from families with a monogenic 
form of AD or patients with a known causative mutation 
provide the opportunity to identify mutation-specific 
effects and to correlate genotypic changes with clinical 

and pathophysiological manifestations of the disease. 
Asymptomatic carriers of mutations can also serve 
as candidates for disease-modifying treatment or 
prevention trials. In the future, different genetic causes 
of AD should be targeted with specific interventions. 

Studies involving mapping pathogenic mutations to 
tertiary structural domains are required to show the vital 
relationships between structure and function. Since the 
amino acid position can, in fact, predict pathogenicity we 
analysed mutations in AD causative genes and compared 
these changes to available clinical data. To the best of our 
knowledge, this is the first study of its kind performing 
comparative and ab initio prediction of protein structure 
for mutated APP, PSEN1, PSEN2 and MAPT proteins. 
In this study we used prediction tools to elucidate how 
mutations in the causative genes change the tertiary 
structure of the proteins. We aim in the identification of 
common structural issues, and in the relation between 
structure and function through the deleterious effects of 
the loss of tertiary structure in EOAD causative genes.
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Original Protein Mutation Pathogenicity FPFH
APP A235V Likely Benign 5
APP A692G Pathogenic 6
APP E296K Not Classified -> Benign 5
APP E380K Uncertain Significance 7
APP E665D Benign 1
APP G709S Not Classified 9
APP H733P Not Classified -> Pathogenic 6
APP I716M Not Classified 9
APP K496Q Not Classified-> Benign 5
APP L705V Pathogenic 8
APP M722K Pathogenic 2
APP P299L Not Classified -> Pathogenic 2
APP P620L Uncertain Significance 7
APP R486W Not Classified-> Pathogenic 3
APP T297M Uncertain Significance 8
APP T719N Pathogenic 4
APP V562I Uncertain Significance 9
APP V669L Not Classified-> Benign 1
APP V717F Pathogenic 3
APP V717I Pathogenic 4
APP V717L Pathogenic 8

Table 2. Results of APP pathogenicity prediction

Key Points
•	 There is still on-going research for improving the identification 

and classification of Alzheimer’s disease patients.
•	 Structural similarity of mutated proteins supports the evidence 

generation for characterisation of mutations pathogenicity.
•	 The applied implementation uses three-dimensional descriptors 

to identify the distance between the structures.
•	 The methodology was very effective and successfully generated a 

new dimension in the pathogenicity determination process.
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