
Abstract

Recently, there has been a growing interest in bioinformatics toward the adoption of increasingly complex 
machine learning models for the analysis of next-generation sequencing data with the goal of disease subtyping 
(i.e., patient stratification based on molecular features) or risk-based classification for specific endpoints, such 
as survival. With gene-expression data, a common approach consists in characterising the emerging groups by 
exploiting a differential expression analysis, which selects relevant gene sets coupled with pathway enrichment 
analysis, providing an insight into the underlying biological processes. However, when non-linear machine 
learning models are involved, differential expression analysis could be limiting since patient groupings identified 
by the model could be based on a set of genes that are hidden to differential expression due to its linear nature, 
affecting subsequent biological characterisation and validation. The aim of this study is to provide a proof-of-
concept example demonstrating such a limitation. Moreover, we suggest that this issue could be overcome by 
the adoption of the innovative paradigm of eXplainable Artificial Intelligence, which consists in building an 
additional explainer to get a trustworthy interpretation of the model outputs and building a reliable set of genes 
characterising each group, preserving also non-linear relations, to be used for downstream analysis and validation.

Introduction
In recent years, high-throughput technologies for 
molecular data, such as next-generation sequencing 
(NGS) are getting increasingly cheaper (van Nimwegen 
et al., 2016) and their use to improve our understanding 
of complex pathologies, such as cancer, is becoming 
widespread. This gives rise to an incredible amount 
of multi-omics data (genomics, transcriptomics, 
epigenomics, etc.), which can be analysed and exploited 
in the context of personalised medicine.

One of the main goals of these analyses is disease 
subtyping, meaning identifying a molecular-based 
stratification of patients affected by the same pathology, 
which ideally relates to prognosis. To this end, there is 
a growing interest in the adoption of state-of-the-art 
machine learning (ML) algorithms and models. These 
already proven excellent performances in almost any 
other field of application due to their ability to catch 
highly non-linear relations and patterns emerging from 
the dataset, which seems ideal when studying the biology 
of such a complex system as cancer (Zhang et al., 2019; 
Tang et al., 2019).

A very common approach to gene expression-
based disease subtyping (see, e.g., Su et al., 2014) is to 

use a clustering model (an unsupervised ML model) 
based on molecular data to divide patients into groups, 
and then validating such grouping from a biological 
perspective by means of the so-called “downstream 
analysis”. This latter typically consists in performing a 
differential expression (DE) analysis (Costa et al., 2017; 
Soneson and Delorenzi, 2013) between the emerging 
groups to identify a set of genes which are considered 
determinants to discriminate between subtypes, and 
then exploiting those genes to perform a gene-set 
enrichment analysis (GSEA), unveiling the underlying 
biological processes characterising the emerging 
subtypes, and laboratory validation, whenever possible. 
Such an approach is of course valid, especially if a simple 
and linear clustering model has been used. However, 
when complex non-linear ML models are involved, DE-
based characterisation has potential limitations that may 
affect the biological interpretability of results and that, to 
the best of our knowledge, has not been reported so far. 
In particular, when patient grouping is based on a non-
linear relationship with a feature (i.e., gene), such feature 
may be hidden to DE analysis, leading to a failure of the 
subsequent downstream analysis and validation and, 
overall, an incomplete biological characterisation.

On potential limitations of differential expression 
analysis with non-linear machine learning models
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Beyond unsupervised disease subtyping, such 
limitation of DE analysis in general still holds for any 
problem involving biological characterisation of different 
groups identified by exploiting non-linear ML models, 
such as the classification of high/low-risk groups for a 
specific end-point based on gene expression data (see, 
e.g., Choi et al., 2020).

In the subset of cases where the model developed 
provides the possibility to assign labels to new data 
points (e.g., any supervised classifier or any unsupervised 
model that creates a partition of the feature space, such 
as kMeans-based models), we encourage the adoption of 
the innovative eXplainable Artificial Intelligence (XAI) 
paradigm (Arrieta et al., 2020). It consists in building 
an additional explainer model to get a trustworthy 
interpretation of the model outputs as an alternative to 
DE analysis to build a reliable set of determinant features 
(i.e., genes) characterising each group, preserving also 
non-linear relationships.

The aim of this short paper is to provide a minimal 
proof-of-concept example of the above-described 
limitation, which has never been reported so far, 
suggesting and highlighting the strength of adopting 
XAI-based alternatives. This is done by considering 
three well-motivated synthetic datasets (see Discussion), 
each consisting of two groups, where features mimic 
the values of a gene-expression matrix, and some of 
them result in linear or non-linear relationships with 
groups. Firstly, we analysed the groups with DE analysis, 
showing that only those features corresponding to a 
linear separation between groups emerge as significative; 

secondly, we used simple models distinguishing between 
the two groups to apply XAI-based explanations and 
proving that, in this case, also features having non-linear 
relations with groups are detected as relevant.

Methods
Datasets
We built three synthetic datasets, named (A) clouds, (B) 
circles and (C) circles (big), respectively. Datasets A and 
B (see Figure 1) are made of 20 variables (x1, …, x20 – 
also referred to as features), mimicking the values of a 
gene expression matrix where each feature represents a 
gene. Out of the 20 variables, 18 are built as pure noise, 
sampling the values from uniform distributions. The 
remaining two variables for each dataset are instead 
“significative”, allowing to distinguish well-separated 
groups. “Significative” variables have been set randomly 
by drawing two numbers between 1 and 20 with uniform 
probability for each dataset. C is similar to the others in 
that it is characterised by two “significative” variables, but 
it is meant to prove that the number of variables involved 
and correlations between them are actually irrelevant to 
the issue considered. As such, it is made of additional 
800 noisy variables, plus 198 other variables with linear 
correlations with the others (correlation coefficients 
have been computed and found to be variable up to 
0.99). Overall, the third dataset is made of 1000 variables 
with a signal-to-noise ratio of 0.002.

Each of the three datasets consists of 2000 points, 
equally divided into two groups of 1000 that are meant 
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Figure 1. 2D representation of the synthetic datasets A (left) and B (right), where x and y axes represent the 2 relevant variables of 
each dataset respectively, namely: (A) clouds: x9, x20; (B) circles: x4, x17. Pattern of dataset (C) is not reported to avoid redundan-
cy (similar to panel B). Colours and point shapes help in visualising the 2 emerging groups of each dataset. Thick crosses with error 
bars represent the mean and standard deviation of the 2 groups. Z(x) and Z(y) in the panel headers report the results of Normal Z 
tests between the mean values along x and y axes of each plot, respectively, with associated p-values.
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to represent two subtypes or classes of interest within 
the dataset, in the case of clustering and classification 
models, respectively. Considering the two significant 
variables, the groups are generated as follows:

(A) Clouds. Bivariate Normal distributions with 
different centres and same standard deviation in 
both directions. This dataset is exemplary of a linear 
relation between significant features and groups. From 
a biological perspective, it represents, for example, a 
couple of genes that are over- and under-expressed in the 
two groups, respectively.

(B) Circles. The inner cloud is sampled from a 
bivariate Normal distribution, whereas the outer cloud 
is sampled from a Gamma distribution with an offset 
on the radial coordinate. This dataset is exemplary of a 
purely non-linear relation between significant features 
and groups. From a biological perspective, it represents, 
for example, a couple of genes whose expression has 
to be kept in homeostasis for health conditions, and a 
disbalance of expression levels causes the behaviour of 
interest.

(C) Circles (big). The two significant variables are 
sampled in the same way described for dataset B, thus 
defining a similar circular pattern that has not been 
shown in the figure to avoid redundancy. The difference 
with respect to dataset B lies in the number of noisy 
variables and the presence of correlations between 
variables, as previously described.

Moreover, we built a supplementary dataset D 
(see Supplementary Materials1), similar to dataset C 
but with an increased number of significant variables 
and synthetic expression values sampled from negative 
binomial distributions mimicking those of a real 
RNA-seq dataset (see Supplementary Figure 31). This 
supplementary dataset is meant to show that the number 
of significant variables and the underlying distributions 
are not affecting the results hereafter presented.

Differential expression analysis
For each of the three datasets, we carried out a differential 
expression analysis between groups. Computations have 
been performed using two different algorithms, namely 
DESeq (Love et al., 2014), implemented in the R package 
DESeq2, which uses shrinkage estimation for dispersions 
and fold change estimates, and GLM (McCarthy et al., 
2012), implemented in the R package edgeR, which 
applies a kernel transformation to the feature space 
before regression. Genes are considered significantly  
differentially expressed in the case of an adjusted p-value 
below 0.05.

Machine Learning models
For each of the three datasets, we built a simple model 
distinguishing between the two groups and providing 
the labels reported in Figure 1 (i.e., tagging “red” and 
“blue” samples).  In particular, for dataset A (clouds) we 
used a linear model implementing a decision boundary 

1http://journal.embnet.org/index.php/embnetjournal/article/
downloadSuppFile/1035/1035_supp_1

lying on the significant variable plane and perpendicular 
to a line passing through the centres of mass of the two 
clouds. For dataset B (circles) and C (circles – big), 
we used a non-linear model implementing a circular 
decision boundary lying on the significant variable 
planes, respectively, centred on the centre of mass of the 
inner cloud. Implementation is public and available on 
GitLab (see Data & code availability section).

XAI-based explanation analysis
We applied an XAI-based approach, training two 
different explainers for each dataset to interpret the 
model’s output. To this end, we used both LIME (Ribeiro 
et al., 2016) and kernel-SHAP (Lundberg and Lee, 2017), 
which are the two most popular explainers for models 
built on tabular data, and they are both local explainers, 
meaning that they provide local explanations for each 
point of the dataset. In particular, the explainers result 
in a value associated with the importance of each feature 
in explaining the output of each point. Intuitively, this is 
done by: (i) creating a neighbourhood of the data point to 
be explained. Such process is different between the two 
explainers since LIME applies a Gaussian perturbation 
to the point, whereas kernel-SHAP substitutes some 
of the values of the features with those sampled from a 
background set provided as input (we used 20 random 
points of the dataset). (ii) Assigning labels to the 
neighbours applying the model and; (iii) fitting a linear 
model on the whole neighbourhood that represents a local 
linear approximation of the global decision boundary 
between groups in the neighbourhood of the data point 
to be explained. The weights of the linear approximation 
are used to assign a local importance score to each 
feature.  The overall importance of the features can be 
obtained either by averaging the contributions over all 
the points of the datasets or by considering the median 
value of the distribution. It should be noted that absolute 
importance values provided by LIME and kernel-SHAP 
are not directly comparable.

Data and code availability
The data generated to support the presented findings, as 
well as the code used for data generation, data analysis 
and plots, are publicly available on GitLab at: https://
gitlab.com/deflect-public/differential-expression/.

Results
The variables randomly selected as significant were x9 
and x20 for dataset A, x4 and x17 for dataset B and x23 
and x83 for dataset C. Results of the DE analysis for all 
three datasets are shown in Figure 2. From the adjusted 
p-value, it results that DE analysis (both DESeq and 
GLM) is effective in identifying important features in 
the case of dataset A (clouds), in which x9 and x20 are 
characterised by p<0.001 and noisy features are rejected. 
Instead, it fails when non-linearity is introduced, i.e., 
with datasets B (circles) and C (circles – big) in which no 
significative features are detected.
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Results of XAI-based feature importance analysis 
are summarised in Figure 3 for both tested explainers, 
namely LIME and kernel-SHAP. As expected, both 
the explainers proved to be effective in highlighting 
the relevant features for all the datasets considered by 
assigning importance scores way above those of noisy 
variables.

In the chosen examples, LIME seems to result 
in distributions that are a bit better separated from 
noisy variables with respect to kernel-SHAP. On the 
other hand, kernel-SHAP seems to be more efficient in 
recognising noisy variables whose contribution is set to 
zero, whereas LIME typically assigns negligible but non-
zero contributions to those variables.

Discussion
The present study focuses on a general issue arising 
any time ML models are applied to gene expression 
data to stratify patients based on their molecular 
profile. In particular, the clustering model or classifier 
assigns labels to the samples, and researchers have 
to understand whether the resulting grouping is 
biologically meaningful or not. This latter process, often 
referred to as “downstream analysis”, involves many 

further analyses such as GSEA (or pathway analysis) and 
wet lab validation, and it is possibly followed by clinical 
validation if the results are considered significant and 
robust enough. All these analyses, however, rely on the 
common issue of identifying the subset of genes that 
have been determinant for the model in assigning the 
labels or, in other words, the set of genes characterising 
the groups to be used for subsequent pathway analysis 
and validation. Such characterisation is very often 
performed with DE analysis between groups; however, 
notably, the above-presented findings highlight an 
intrinsic limitation of DE analysis. In particular, it is very 
effective if the groups under consideration are (nearly) 
linearly separable, whereas it fails in identifying relevant 
features when non-linearity is introduced. This does not 
mean that DE analysis is wrong, nor it is the intention 
of the authors to make criticisms of specific previous 
literature, but that its use as a group characterisation 
and gene selection method for downstream analysis 
should be considered with extreme care if coupled with 
non-linear ML models. Such an aspect, to the best of 
our knowledge, has not been addressed so far in the 
literature.

The major implication of this DE limitation is that 
features that are determinant for the model to distinguish 
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Figure 2. Volcano plot representing the results of differential expression analysis for the three datasets (different col-
ours and shapes) obtained with DESeq (left) and edgeR-GLM (right), respectively. Vertical dashed lines represent 
significance thresholds. Adjusted p-values have been computed using the Benjamini-Hochberg correction.
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between the two groups could potentially pass 
undetected. This has the consequence of affecting the 
list of genes used for lab validation or pathway analysis, 
thus potentially compromising the significance of such 
validation techniques. In other words, if the hypothesis 
developed is good, it may be that relevant biological 
characteristics of the groups under consideration evade 
the attention of researchers and limit the interpretability 
of results or, worse, that the hypothesis is rejected because 
results are erroneously considered not biologically 
meaningful.

Concerning the model, we would like to insist that 
the considerations made throughout the paper are valid 

both for classifiers and clustering models. In fact, for 
our purpose, the model might be considered as a black-
box tool that, given the input data, provides labels as 
output, establishing a linear or non-linear relationship 
between inputs and output. Instead, we propose that the 
focus should lie on methods that allow to understand 
which features were actually relevant in determining 
such labels. As a consequence, details on classification 
accuracy or model training are not provided since they 
are not pertinent for clustering models and, overall, 
irrelevant to the results and conclusion presented.

As a complement to DE analysis, we propose to adopt 
(whenever possible) an XAI-based approach, which we 
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Figure 3. Feature importance of the three datasets (rows) computed using two different explainers, namely LIME (left column) 
and kernel-SHAP (right column). Boxplots report feature importance based on local explanations of each sample. Vertical dashed 
lines indicate the relevant features of each dataset.
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demonstrated to be able to overcome limitations related 
to non-linearity. On the other hand, such an approach 
has some drawbacks that should be considered. First, it is 
not always applicable, especially because it requires that 
the AI model selected can be used to predict labels of 
new data points. But, this is only the case of supervised 
models and the subset of unsupervised models that 
create a partition of the feature space, such as kMeans-
based models. For the other cases, DE analysis still 
remains the only option. Second, research on XAI models 
is a cutting-edge topic in the field of ML applications, 
and it is still in its early years. Thus, little guidance 
exists in order to help researchers in choosing the best 
configuration of parameters to get reliable estimations 
of feature importance from the explainers, which at 
this point requires tuning of hyperparameters and their 
combinations. In this direction, it is worth mentioning 
the work of (Amparore et al., 2021) in providing reliable 
metrics to quantify the quality of XAI explanations, 
which may be helpful in guiding hyperparameter tuning. 
Finally, while DE analysis provides p-values associated 
with fold change estimates, a major limitation of the XAI-
based approach is that it only provides a number whose 
absolute value is associated with feature importance. 
As a result, relevant and not relevant features have to 
be defined by means of a threshold, typically applied 
to the average importance value, which may not be 
straightforward to set either since there is not a general 
analytical rule. A possible method would be to look for 
gaps or “knees” in the ordered feature importance plot.

A further element that is worth discussing is our 
choice of simulated data instead of real data, which is 
generally preferred in methodological studies related to 
gene expression. Indeed, in this case, the choice is well 
motivated by several considerations. First, simulated 
data allow us to control which genes are relevant for 
classification and to verify if they are actually detected 
by the approaches considered without any dependencies 
on the biological interpretation of results, which instead 
would not have been possible with a real dataset. Plus, 
many biological interpretations are based on existing 
methodological results and thus subject to their 
shortcomings: using them would have resulted in a self-
feeding vicious circle. Second, it is true that real datasets 
are characterised by many genes interacting with each 
other, but we show with dataset C that the number of 
variables and correlations between features does not 
affect the methods considered, apart from increasing the 
computing time, and that the conclusions derived from 
dataset A and B, still hold for dataset C. In fact, results 
for dataset C, characterised by numerous and correlated 
features, are equivalent to those obtained with dataset 
B (see Figures 2 and 3), characterised by few features 
without correlations. Moreover, with supplementary 
dataset D1, we also show that the number of significant 
variables or the underlying distribution of the synthetic 
expression values do not affect the results. Third, and 
probably most importantly, we highlighted how DE 
limitations arise in the case of non-linear relations 

between gene expression data and the resulting groups. 
It is important to note that such grouping is the output 
of the model (i.e., labels), so that non-linearities are 
introduced by the model itself and do not necessarily 
coincide with the underlying “ground truth”. In other 
words, what is actually relevant is not the structure 
of the dataset, but rather the shape of the decision 
boundary defined by the model. If the model results in a 
non-linear decision boundary, which is likely to happen 
when complex ML models are used, DE analysis may 
not be effective in identifying the relevant variables for 
group characterisation. Conversely, as we have shown, 
the XAI-based approach is better suited, independently 
of the dataset. Finally, we stress that the focus of this 
study is purely methodological; thus, although a real 
dataset would have been illustrative of a full downstream 
analysis leading to a biological interpretation based on 
the relevant features (genes) detected, in this case, we 
are just assessing the capability of each method to detect 
those relevant features under different conditions.

It should be noted that while the present study 
focuses on differential expression, the underlying idea 
has a broader application, and there are no conceptual 
limitations in extending it to similar analyses under 
the same assumptions, such as the case of group 
characterisation based on differentially methylated genes 
(see, e.g., Kolbe et al., 2014).

As a final remark, we would like to point out 
that, with this study, we are not presenting an original 
XAI model and that there may be better XAI-based 
approaches to use as a complement to DE analysis, 
depending on the specific application. Nonetheless, the 
limitation of DE analysis that we are highlighting still 
holds and should be considered when characterising the 
biology of groups identified with non-linear ML models.

Conclusions
In conclusion, in the present study we identified a 
potential limitation of DE analysis used as a gene 
selection method for subsequent enrichment analysis 
and lab validation when patient grouping is obtained with 
the application of complex non-linear ML models. We 
provided a proof-of-concept example of such limitation 
by exploiting three synthetic datasets. To overcome the 
issue, we suggest using XAI-based alternatives that can 
be effective on the cases considered.
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Key Points
•	 DE has limited capability to detect non-linear relationships 

between features and target.
•	 DE limitation becomes relevant when coupled with complex 

(non-linear) ML clustering or classification models.
•	 For the subset of ML models that can predict labels for new 

data points, DE limitation can be overcome by applying XAI to 
interpret ML output and detect the relevant features.
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