
Abstract

Plant-pathogen interactions activate molecular activities wherein the host defends the pathogen while the 
pathogen tries to suppress the plant response. Small RNAs (sRNAs) mediate major mechanisms, including 
post-transcriptional gene silencing, histone modification and DNA methylation by which plants respond to the 
presence of pathogens. Genome-wide profiling of host and pathogen sRNAs is therefore pivotal to uncovering 
the mechanisms underlying the host-pathogen interaction and mechanisms for host resistance. sRNA high 
throughput sequencing (HTS) data analysis often involves multiple stages/tools. Most necessary tools are 
accessible only through the command line, making it challenging for those without a high level of Unix/Linux 
skills. Furthermore, installation of some of these tools may become difficult due to dependencies and software 
version compatibility. We have developed an integrated open-source pipeline, Ds-Seq, for end-to-end in silico 
analysis of sRNA HTS data with improved reproducibility. The pipeline combines in-house scripts and public tools 
in a shell script, which can be invoked with a single command. The pipeline’s usefulness has been demonstrated 
with testing on publicly available and published data from independent sRNA-seq datasets of host-pathogen 
interaction studies. Ds-Seq is available on GitHub, while a Docker image can be obtained from the Docker hub.

Introduction
Small RNAs (sRNAs), generally between 20-30 nt long, 
have regulatory functions which are critical to many 
biological processes (Won et al., 2014). The 21-24 nt 
subset, also referred to as micro RNAs (miRNAs), are 
evolutionarily conserved between species (Zhang et 
al., 2006). In host-pathogen interaction, sRNAs play a 
significant role in the defense response of the host to 
pathogen invasion through the RNA interference (RNAi) 
machinery (Pumplin and Voinnet, 2013; Carbonell et 
al., 2019). sRNAs can also regulate gene expression 
through DNA methylation and histone modification 
(Wang et al., 2018; Tamiru et al., 2018; Diezma-Navas et 
al., 2019). These multiple pathways of sRNA-mediated 
gene expression regulation underscore the importance 
of genome-wide characterization of sRNAs as an 
essential first step to further investigation of molecular 
mechanisms orchestrated by sRNAs in response to 
different environmental cues. 

High throughput sequencing (HTS) technologies 
such as small RNA sequencing (sRNA-seq) and computa-

tional analysis tools have been successfully applied to 
carry out genome-wide profiling of the sRNA landscape 
of many organisms to investigate roles played by sRNAs 
in different conditions (Li et al., 2018; Hu et al., 2020; 
Wenlei et al., 2020). 

Knowledge discovery using computational tools 
for in silico analysis of HTS data often involves multiple 
stages, determined mainly by the specific research 
questions to be answered. Each step usually entails 
selecting a computational tool from a buffet of available 
tools. Many of these tools are accessible only through a 
command-line interface (CLI) (Seemann, 2013), making 
it a challenge, especially for those not familiar with a 
Unix/Linux operating system environment (Xu et al., 
2014; Morais et al., 2018; Joppich and Zimmer, 2019). 
The command-line design, however, favours a batch 
processing approach for computational pipelines where 
the output file of a stage, after manipulation, is parsed 
to the tool at the next step. Furthermore, installation of 
some of these required tools for analysis may become 
difficult due to dependencies and software version 

Ds-Seq: an integrated pipeline for in silico 
small RNA sequence analysis for host-pathogen 
interaction studies

© 2024 Olagunju et al.; the authors have retained copyright and granted the Journal right of first publication; the work has been simultaneously 
released under a Creative Commons Attribution Licence, which allows others to share the work, while acknowledging the original authorship 
and initial publication in this Journal. The full licence notice is available at http://journal.embnet.org.

Re
se

ar
ch

 P
ap

er
s

Article history
Received: 23 September 2023
Accepted: 19 November 2023
Published: 25 January 2024

 Page 1 of 10 
not for indexing e1037

Olagunju et al. (2024) EMBnet.journal 29, e1037
http://dx.doi.org/10.14806/ej.29.0.1037

Temitayo Adebanji Olagunju 1, 2, Angela Uche Makolo 1, Andreas Gisel 2, 3 

1 University of Ibadan, Ibadan, Nigeria
2 Bioscience Centre, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
3 Institute for Biomedical Technologies, National Research Council of Italy (CNR), Bari, Italy
Competing interests: TAO none; AUM none; AG is a member of EMBnet.journal Editorial Board

http://dx.doi.org/10.14806/ej.29.0.1037


compatibility with user operating systems (List et al., 
2017; Mangul et al., 2018). More efficient and effective 
research can only be conducted when wet biologists 
are left to focus on knowledge discovery from compu-
tational analysis and not waste time setting up tools, 
troubleshooting or learning to use them (Smith, 2013; 
Smith, 2014). It is important to note that the problem 
of reproducibility of results (Stodden et al., 2018; 
Beaulieu-Jones, 2017) also becomes pronounced against 
the backdrop of the challenges of bioinformatics tools 
installation and management.

Some pipelines for the analysis of sRNAs are already 
in existence but are not tailored for host-pathogen in-
teraction experiments. The Java-based UEA sRNA 
Workbench (Beckers et al., 2017) was developed to 
explore the sRNA landscape based mainly on the 
differential expression analysis of sRNA libraries. This 
tool is thus limited in its scope. sRNAPipe was developed 
by (Pogorelcnik, 2018) as a GUI-based pipeline on the 
Galaxy platform (Afgan et al., 2018) for the exploratory 
analysis of sRNA libraries. The pipeline maps the reads 
to only the host genome assembly, after which they 
are classified into four main sub-groups for further 
exploration and does not include a module for differential 
expression analysis of the sRNAs in the libraries. 
sRNAbench and sRNAtoolbox 2019 (Aparico-puerta 
et al., 2019), which is an update of the sRNAtoolbox 
(Rueda et al., 2015), provides a more comprehensive 
suite of tools for the exploration of the sRNA landscape 
through a GUI, including differential expression analysis, 
visualisation of genome-mapped reads on a genome 
browser, and sRNA target prediction. Although the 
sRNAtoolbox provides a differential expression analysis 
module, unlike the UEA sRNA Workbench and the 
sRNAPipe, it does not offer segregation of the sRNAs 
by the library to aid quick identification of unique and 
common sRNAs in the libraries. 

In this paper, we present Dockerized sRNA-Seq 
tool, Ds-Seq, an open-source in-silico analysis pipeline 
for investigating host-pathogen interaction in plants 
with available genome assemblies through profiling the 
sRNA landscape. With parameters specified by the user 
through a configuration file, it takes the fastq files of 
the sRNA-Seq libraries as input, maps the reads to the 
user-supplied host and pathogen genome assemblies, 
produces a differential expression profile of the sRNAs 
in the libraries, segregates the host-mapped sRNAs by 
the library, identifies known miRNAs, and predicts novel 
sRNAs. Only a single command is required to initiate the 
analysis with this pipeline, making it relatively easy to use 
in a CLI environment without requiring high technical 
skills in UNIX/Linux environment. We also introduced 
the use of a Docker container to provide a consistent 
environment for reproducibility of results (Baker and 
Penny, 2016) and eliminate the challenges occasioned 
by software versioning and compatibility issues. This 
pipeline has been tested with publicly available sRNA-
Seq data from host-pathogen interaction studies with 
accompanying published results. The outcome of the 

testing generally showed agreement between results 
obtained by Ds-Seq and published data. Ds-Seq is freely 
available from the GitHub repository1 and Docker hub 
with ID cephas/ds-seq2.

Materials, Methodologies and 
Techniques
Ds-Seq (with schematic shown in Figure 1) was developed 
with Perl, Python and R scripts, all wrapped in a single 
shell script that can be run with a single command. It 
was designed with a modular structure such that each 
module corresponds to a stage of the analysis that could 
be carried out separately with other bioinformatics tools. 
The user can select specific modules of interest or all 
the modules through a configuration file where all the 
parameters for the analysis are defined. It is important to 
note that Ds-Seq does not contain a database, so all the 
files required for analysis, including reference genome 
sequences, have to be supplied by the user. Parameters 
for the independent tools are also to be defined by the 
user through an accompanying configuration file. Due 
to the wide variation of the sRNA family, based on the 
sequence length, the class of sRNA of interest to a user 
can be defined and controlled with the length parameters 
in the configuration file. Further exclusion of other 
types of non-coding RNAs such as tRNA, piwiRNAs, 
snoRNAs etc., can be made from the analysis through a 
multi-fasta file containing the sequences to be excluded. 
Sequences from Rfam (Kalvari et al., 2020) are examples 
of sequences that could be excluded from any analysis 
carried out with Ds-Seq.

Design
Ds-Seq was designed to analyze sRNA-seq data 
easily and with reproducibility, especially for wet 
biologists with minimal experience with Unix/Linux 
operating system command line interface. As such, the 
invocation of the pipeline is achieved with a single line 
of command after parameters have been defined in the 
accompanying configuration file and user files have been 
correctly placed. Each module of Ds-Seq has specific file 
requirements such that the modules selected by a user 
would determine the required input files and data. File 
requirements are shown in Table 1 for the modules (i) 
NGS sequences filtering, (ii) expression profiling, (iii) 
novel sRNA prediction, (iv) genome-wide host and 
pathogen sRNA mapping, and (v) conserved sRNA 
mapping. Reads mapping is carried out generally using 
Bowtie (Langmead, 2009), being a memory-efficient and 
ultra-fast short DNA sequence alignment program, using 
default parameters for mapping in addition to reporting 
the best alignment. At the same time, the user defines 
the number of accepted nucleotide mismatches between 
sequences through the configuration file.

1https://github.com/CEPHAS-01/small-RNASeq.ngs
2https://hub.docker.com/r/cephas/ds-seq
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Input raw sequence files can be left in compressed 
zip (.gz) format without the need to first decompress as 
the pipeline can discriminate the file type and handle it 
appropriately. The raw sequence files of the sRNA-Seq 
libraries must be saved in replicates in a folder named 
by the sample and located in the ‘data’ directory in a 
manner representative of the experimental design. A 
unique analysis ID is generated for each non-redundant 
sequence and is consistent across all the libraries. The 
checkpoint feature is implemented at strategic stages of 
the pipeline to avoid repeating steps previously executed, 
especially tasks requiring intensive compute time, such 
as reference sequence indexing. The configuration file 
can be used for processing other analyses while retaining 
the same parameters to enable the user to compare 
different libraries to identify similarities and differences. 

The analysis modules in Ds-Seq are further explained in 
the following sections.
NGS reads filtering

The NGS data filtering is carried out using in-house 
Perl scripts to remove adapter sequences and sequences 
without an adapter from the input raw reads library. 
An optional further clipping of 4 nt from the 5’ and 3’ 
ends of the cleaned reads is done if the High Definition 
protocol (Sorefan et al., 2012) was used during the library 
preparation. For each input raw reads file, each sequence 
is aggregated into one, and its abundance in the input 
file is appended to the sequence header information to 
produce a multi-fasta file. Non-redundant reads with 
a length that meets the user-defined range and reads 
abundance not less than the defined threshold in the 
configuration file are retained for use downstream of 
the analysis pipeline as clean reads. An optional step 
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Figure 1. Schematic of sRNA sequencing analysis pipeline. 
(a) Parameters and file paths are defined in a configuration file. (b) Raw sequence reads of the samples in .fastq or .gz file format, 
and other data are supplied to the validation module. (c) With successful validation stage, reads are passed on for removal of 
adapter sequences where raw reads without adapters are discarded while adapter sequences are removed from the other reads. 
(d) Adapter-cleaved reads are further processed if the HD protocol was used in the library preparation. (e) Adapter-cleaved reads 
are filtered for the length specified in the configuration file to produce clean reads. (f) Reads processed for HD protocol are 
filtered with length to produce clean reads. (g) Length-filtered reads are optionally processed to remove unwanted non-coding 
RNAs supplied by the user (h) Clean reads are produced for further analysis (i) cleaned reads are produced for further analysis (j) 
Cleaned reads are parsed for novel small RNA prediction. (k) Cleaned reads are mapped to the host genome and separated into 
host-mapped and unmapped sRNAs (l) Cleaned reads are parsed for expression matrix generation, and (m) expression matrices 
are parsed for differential expression analysis (n) Host-mapped sRNAs are segregated by sample (o) Host-mapped sRNAs are 
mapped to known miRNAs repository to identify known miRNAs (p) Known miRNAs expression profile in samples are produced.

http://dx.doi.org/10.14806/ej.29.0.1037


also removes any other unwanted non-coding RNA 
sequences from the reads, such as sequences from 
Rfam (Kalvari et al., 2020) or different user-defined 
sequences supplied through a multi-fasta file. A bar 
plot of the length distribution of the cleaned reads from 
all replicates of the samples is also produced to give an 
insight into the profile of the sRNAs within the libraries 
and as a further check of the quality of the sRNA-Seq 
libraries. This information helps determine the quality 
of the library. It could also provide information on the 
specific molecular pathway origin of the sRNAs based on 
the activities of Dicer (Mueth et al., 2015).

Differential Expression Profiling
This module in the pipeline is used to reveal the differential 
expression profile of all sRNAs across the libraries and 
experimental conditions of interest. Count matrices of 
the cleaned reads across pairwise combinations of all 
libraries are produced, using the sequence as a unique 
identifier to achieve sequence identity uniformity across 
all the libraries. These matrices are parsed as input into 
the edgeR (Robinson et al., 2009; McCarthy et al., 2012) 
package for the differential expression analysis. Reads 
that meet the fold change and p-value criteria defined 
in the configuration file are returned as differentially 
expressed.

Conserved/known miRNAs identification
Micro RNAs (miRNAs) belong to a sub-class of sRNAs 
with sequence lengths between 21-24 nt. Some miRNAs 
are evolutionarily conserved across species (Zhang et al., 
2006) and are identified through a homology search of 
the known mature sequences in the miRNA repository 
miRBase (Kozomara et al., 2019) (www.mirbase.org). 
In this pipeline module, all known mature sequences 
hosted in miRBase are supplied as a multi-fasta sequence 
file indexed with Bowtie (Langmead et al., 2009) before 
mapping. The user can alternatively provide a list of 
conserved sequences of interest in a multi-fasta format 
as a reference in place of the mature sequences from 
miRBase. All sequences with the best hit within the 
defined acceptable nucleotide mismatch parameter 
defined in the configuration file mapping to this 
repository are reported as known sRNAs. The sequences 
specific to the host are reported as known host sRNAs.

Prediction of novel sRNAs
Plants produce stress-responsive sRNAs in response 
to biotic and abiotic stressors. Due to the specificity of 
production of these sRNAs (Sunkar et al., 2012), novel 
prediction is required to uncover those present in the 
sRNA-Seq libraries. To this aim we use miRDeepP 
(Yang and Li, 2011), an open-source software designed 
specifically for predicting sRNAs in plants. mirDeepP 
comprises nine different Perl scripts. The critical pa-
rameters required at some of the stages of this analysis 
have been included in the parameters supplied by 
the user through the configuration file. The reader is 
referred to (Yang and Li, 2011) for further information 
on the distinct stages, and the parameters required. 
The predicted sRNA sequences are further filtered by 
mapping to miRBase  to discard known miRNAs, while 
unmapped sequences are retained as potential novel 
sRNAs.

Genome-wide Host and Pathogen sRNA 
Profiling
To differentiate between host and pathogen(s) sRNAs, 
the raw reads are mapped against the corresponding 
reference genomes supplied by the user. The indexing of 
the genomes and the subsequent mapping is done by the 
mapping software and does not require any further action 
by the user. The sequences are mapped first to the host 
reference genome, and only reads that fail to map to the 
reference genome are mapped to the pathogen reference 
genome. This step provides the mapping profiles of 
each sRNA-Seq library, reporting the number of reads 
mapped to the reference genomes (host and pathogen), 
the distribution of the sequence lengths of interest 
defined by the user in the configuration file across all 
the libraries, and the loci of each sRNA on the reference 
genome. A repository of pathogens genome assemblies 
can be supplied as a reference in multi-fasta file format 
for a comprehensive pathogen sRNA profiling.

Input
To use Ds-Seq, it is expected that the NGS sequences 
have passed quality control and are deemed suitable 
for further downstream analysis. The input files to the 
pipeline consist mainly of (i) a configuration text file 
and (ii) data, including the raw single-ended sRNA 
sequence reads in fastq or zipped fastq formats (.gz), 
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Table 1. Files requirement for each modular stage of the analysis pipeline.

Analysis module Other input parame-
ters (through configu-
ration file)

Reference genome 
assembly

Annotation file Chromosome length 
file

Filter NGS data Yes No No No
Host mapping Yes Yes No No
Conserved sRNA Yes Yes No No
Pathogen mapping Yes Yes No No
Novel sRNA prediction Yes Yes Yes Yes
Expression profile Yes No No No

http://dx.doi.org/10.14806/ej.29.0.1037


annotation file corresponding to the genome assembly 
build, chromosome length file and reference sequences 
(Table 2). The pipeline can parse unzipped input fastq.gz 
files without requiring any pre-processing. A validation 
module checks and validates all the input parameters 
from the configuration and input files. If an error is 
flagged, the analysis does not commence, and a report is 
written to a log file.

Output
The results of the different stages of the analysis are 
organised into subfolders based on the modules of the 
pipeline, and all the sub-folders are presented in a single 
output folder. A schematic showing the organisation of 
the pipeline output is shown in Supplementary Figure 
S13, while a more detailed description is presented 
in Supplementary Table 134. The output files are 
formatted as tab-delimited flat files to make it easy to 
port the results to other tools for further downstream 
analysis. Results produced include the profile of sRNA 
in the samples highlighting the host and pathogen 
sequences, the differential expression profile between 
libraries, conserved sRNAs, and novel predicted sRNAs. 
Publication-ready plots of the sRNA length distribution 
across libraries and frequency of the nucleotides at the 
5’ positions of the reads are produced. For differential 
expression analysis, volcano plots, a multidimensional 
scaling plot (MDS) and a biological coefficient of 
variation (BCV) (McCarthy et al., 2012) plot are also 
produced.

Validation
Ds-Seq was validated using two publicly available 
datasets obtained from host-pathogen interaction 
studies with published results.
(i) Study A: sRNA-seq data obtained from the work of 

(Yang et al., 2018) where the regulatory roles of Rice 
Stripe Virus (RSV)-derived small interfering RNAs 
were investigated in rice. Although this work entailed 
comparative sRNA data analysis from rice and the 
insect vector Laodelphax striatellus, we focused on 
only the RSV interaction with rice. Two samples of 
mock and RSV-infected rice in two replicates each 
were used. The data was obtained from the National 

3http://journal.embnet.org/index.php/embnetjournal/article/
downloadSuppFile/1037/1037_supp_fig
4http://journal.embnet.org/index.php/embnetjournal/article/
downloadSuppFile/1037/1037_supp_tab

Center for Biotechnology Information (NCBI), 
accession number GSE113555.

(ii) Study B: NGS data obtained in a study of sRNAs 
from the interaction between Turnip Mosaic Virus 
(TuMV) and the Tanto and Drakkar cultivars of 
oilseed rape Brassica napus (Pitzalis et al., 2020). 
Only the data from the Drakkar cultivar was used 
for testing Ds-Seq. The sRNA-seq data in this study 
were retrieved from the NCBI Sequence Read 
Archive (SRA) using accession code PRJNA508739.

Pipeline Availability
Ds-Seq can be downloaded as scripts from the GitHub 
repository5 and run on a UNIX/Linux operating system 
or obtained as a docker image from Docker hub with the 
ID cephas/ds-seq6. Further details of how to download 
and use the pipeline are contained in the README.
md file on the GitHub repo. A user manual describing 
how to use the pipeline is available for download at the 
Github repository.

Technical Information
The versions of the software used in the Docker container 
for this pipeline and under which it has been tested are 
listed as follows:
1. Ubuntu - 18.04
2. R-base - 3.6.1
3. Perl - 5.26.1
4. Python - 2.7.17
5. RNAfold 2.4.11
Information on third-party tools used in the pipeline 
is presented in Table 2. We recommend running the 
pipeline using the Docker container since all the software 
are already bundled with the image. 

However, the pipeline can still be run as scripts on a 
UNIX/Linux machine if an environment with these ver-
sions of tools is provided. This is not to say that other 
versions of these software will not work, but that the 
pipeline has performed correctly in an environment with 
these specific software versions.

Supporting data
The two published datasets used for testing the 
pipeline were obtained from the National Center for 
Biotechnology Information (NCBI) Gene Expression 

5https://github.com/CEPHAS-01/small-RNASeq.ngs
6https://hub.docker.com/r/cephas/ds-seq

Re
se

ar
ch

 P
ap

er
s

 Page 5 of 10 
not for indexing e1037

Olagunju et al. (2024) EMBnet.journal 29, e1037
http://dx.doi.org/10.14806/ej.29.0.1037

Usage Tool Source
Differential Expression EdgeR https://bioconductor.org/packages/release/bioc/html/edgeR.html 
Sequence Alignment Bowtie http://bowtie-bio.sourceforge.net/index.shtml 
Novel miRNA Prediction miRDeep-P http://sourceforge.net/projects/mirdp/
MFE: Vienna RNA Package (RNA fold) RNAfold https://www.tbi.univie.ac.at/RNA/
Plots GGPlot2 https://cran.r-project.org/web/packages/ggplot2/index.html 

Table 2. List of third-party tools used in the pipeline and their sources.

http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_fig
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_fig
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Omnibus (GEO) database for Study A using accession 
GSE113555, and Sequence Read Archive (SRA) for Study 
B using accession PRJNA508739. All the data produced 
by the pipeline have been reported in this paper and 
the supplementary files. A test data for the pipeline will 
be made available for review on request pending the 
time that it would be hosted permanently in a public 
repository.

Results
Ds-Seq was tested with two different publicly available 
datasets, as highlighted in the validation section. For 
each test, the versions of the public dataset and the 
parameters used for the analysis by the authors in their 
study were replicated as much as possible in the pipeline. 

For Study A (Yang et al., 2018), the average cleaned 
reads produced with Ds-Seq for the Mock and RSV-treated 
samples were 13,664,509 and 15,206,600, respectively, 
compared to 13,876,277 and 15,400,564 reads reported 
in the study for the same data (Supplementary Table 17). 
Furthermore, the average percentage of host-mapped 
reads obtained with Ds-Seq was 69.92% for Mock 
samples and 66.73% for RSV-treated samples while in 
contrast, 64.90% and 59.92% were reported respectively 
for Mock and RSV samples in Study A (Supplementary 
Table 27). Negligible reads were reportedly mapped to 
the RSV genome for Mock samples (0.00%) by Ds-Seq 
and in Study A, while for RSV-treated samples 0.54% 
and 0.29% reads were reported mapped to RSV genome 
by Ds-Seq and in Study A respectively (Supplementary 
Table 27). 

The sRNA reads length distribution produced by 
Ds-Seq showed an accumulation of 21-24 nt sRNAs 

7http://journal.embnet.org/index.php/embnetjournal/article/
downloadSuppFile/1037/1037_supp_tab

over other reads length (Supplementary Figure S38), in 
agreement with the report in Study A. The distribution 
of the nucleotides at each position of the reads in the 
libraries produced by the pipeline revealed that at the 5’ 
end, most of the 21nt sRNAs had Uracil (U) while most 
of the 24 nt sRNAs had Adenosine (A) (Figure 1B and 
Supplementary Figure S28), consistent with the report 
in Study A. Differential expression profiles upon virus 
infection as reported in the study showed that 450 and 
1,558 sRNAs were upregulated and downregulated 
respectively (Yang et al., 2018), compared with 3789 
and 1924 sRNAs identified by Ds-Seq at |logFC| ≥ 2.0 
and adjusted p-value < 0.05 (Supplementary Tables 
77 and 87). Although not reported in Study A, Ds-Seq 
identified 628 (167), 687 (172), 925 (178) and 749 (176) 
conserved miRNAs (Rice-specific conserved miRNAs) 
in the Mock1, Mock2, RSV1 and RSV2 samples 
respectively (Supplementary Table 17). Ds-Seq also 
reported 81 and 115 sRNAs from the Mock and RSV 
samples, respectively, as likely novel sRNAs predicted 
by miRDeep-P (Supplementary Tables 97 and 107), which 
were also not mentioned in Study A. 

In Study B (Pitzalis et al., 2020), the percentage of 
cleaned reads produced by Ds-Seq was between 48.2% 
to 74.8% for the Mock samples and 83.5% and 95.4% 
for the infected samples (Supplementary Table 57). In 
comparison, 48.3% to 74.5% (Supplementary Table 57) 
and 83.8% to 96.0% were reported in Study B for the 
Mock and infected samples respectively. For clean reads 
mapped to the Drakkar transcriptome, Ds-Seq reported 
48.4% to 51.9% in the Mock samples, and 19.7% to 19.9% 
in the infected samples, as well as 0.01% to 0.03% and 
30.7% to 33.6% of the reads, mapped to the virus genome 
in the Mock and virus-infected samples respectively 

8http://journal.embnet.org/index.php/embnetjournal/article/
downloadSuppFile/1037/1037_supp_fig
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Figure 2. Examples of plots generated by Ds-Seq showing (a) the length distribution of the Mock and TuMV-infected Brassica 
napus sRNA reads across all libraries showing higher accumulation of 21-24 nt se-quences over other lengths in Study A. (b) 
Nucleotide frequency distribution for the sRNA sequence lengths in the two Rice RSV-infected samples showing dominance of 
nucleotide U at 21 nt and A at 24 nt positions for Study B.

a) b)
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(Supplementary Table 69). This is compared with Study 
B, where 41.9% to 48.6% of the Mock samples mapped 
to the Drakkar (host) transcriptome and 13.4% to 15.3% 
mapped to the virus genome (Supplementary Table 69). 
Similarly, 0.01% to 0.06% of the cleaned reads mapped 
to the virus genome in the Mock sample, while in the 
infected samples, 64.56% to 68.23% of the reads mapped 
to the virus (Supplementary Table 69). The sRNA profile 
generated by Ds-Seq showed a general accumulation of 
the 21-24 nt reads more than other lengths. Still, more 
24 nt reads were recorded in the mock-treated samples 
while 21-22 nt reads were the primary sizes in the 
infected plants (Figure 2A), as was reported in Study B.

The number of differentially expressed sRNA 
reads was reported from Ds-Seq as 49,426 and 18,255 
upregulated and downregulated, respectively, at |logFC| 
≥ 1.5 and pValue < 0.05 (Supplementary Tables 119 and 
129). In Study B, differential expression was reported for 
only conserved miRNAs present in the samples with at 
least ten mean normalized reads showing that about 150 
miRNAs were upregulated and 90 were downregulated 
(Pitzalis et al., 2020). For the conserved miRNAs from 
miRBase Ds-Seq reported between 575 and 1302 
conserved miRNAs compared to 1047 identified in 
Study B, while those specific to B. napus ranged from 64 
to 73 miRNAs across both mock and infected samples 
(Supplementary Table 59). Some plots from Ds-Seq from 
the analysis of data from Study A and Study B are shown 
in Figure 2.

Discussion
sRNA profiling has emerged as an essential step in 
studies regarding the control of gene expression in plants 
due to the implication of sRNAs in various molecular 
mechanisms by which the growth and develop-ment of 
plant species are regulated. These multiple mechanisms 
underscore the importance of a pipeline for sRNA 
profiling as a prime step toward discovering the molecular 
underpinnings of gene regulation involving sRNAs. In 
9http://journal.embnet.org/index.php/embnetjournal/article/
downloadSuppFile/1037/1037_supp_tab

host-pathogen interaction, sRNAs play a significant role 
in the defense response of the host to pathogen invasion. 
The profiling of the sRNA landscape in host-pathogen 
interaction using NGS data opens a path toward the 
identification of sRNAs involved in the host defense and 
to further elucidate the molecular mechanism of the 
host defense response or pathogen action (Yang et al., 
2018; Pitzalis et al., 2020). sRNAs of interest can then 
be extracted for further downstream analysis, such as 
identification of the target genes, co-regulation or DNA 
methylation. 

In this paper, we introduce Ds-Seq, an integrated in 
silico pipeline for sRNA studies in plant host-pathogen 
interaction. The pipeline performance and utility were 
tested  on two publicly available NGS data sets from 
which independent genome-wide sRNA analysis results 
have been published.  The results of testing the automated 
pipeline generally showed agreement with the reported 
results of the independent analysis of the two published 
datasets (Yang et al., 2018; Pitzalis et al., 2020). 

Ds-Seq identified a lower number of host-specific 
conserved miRNAs than the reported figures in the 
independent analysis, which could be attributed to 
the slight differences in tools with the runtime options 
applied at specific stages of the analyses.

In fact, two factors were noted regarding the 
difference with the results of the analysis of the 
conserved miRNA in Study B. Firstly, reads mapping 
was done using Bowtie2 (Langmead and Salzberg, 
2012) with further restrictive parameters to filter the 
output, compared to the use of Bowtie (Langmead et 
al., 2009) with all alignments reported in the pipeline 
(Table 3). Secondly, in Ds-Seq, only B. napus was used 
as the conserved miRNAs of interest from miRbase. 
In contrast, in the analysis of (Pitzalis et al., 2020), the 
pool of conserved miRNAs was drawn from B. napus, 
B. rapa, B. oleracea, A. lyrate and A. thaliana (Table 3). 
The configuration file used for Ds-Seq can take only one 
plant name as an argument for the conserved miRNA of 
interest and could not capture the multiple plant names 
specified in Study B . This would be addressed in future 
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Analysis Adapter removal Reads mapping (pa-
rameters)

Differential expression 
(parameters)

Conserved miRNAs 
reference

Ds-Seq In-house Perl script Bowtie (Langmead et 
al., 2009) (-a --best)*

edgeR ( Robinson et al., 
2009; McCarthy et al., 
2012) (p-value < 0.05)

mirBase (Kozomara et 
al., 2019)

Study A ( Yang et al., 
2018)

Cutadapt ( Martin, 
2011)

Bowtie ( Langmead et 
al., 2009))

edgeR ( Robinson et al., 
2009; McCarthy et al., 
2012) (adjusted p-value 
< 0.05)

Study B ( Pitzalis et al., 
2020)

Cutadapt ( Martin, 
2011)

Bowtie2 ( Langmead 
and Salzberg, 2012)) 
(-t -N 0–end- to-end–
very-sensitive–score-
min C,0,0)

DESeq2 (Love et al., 
2014) ( >= 150 mean 
reads and p-value < 
0.05)

mirBase ( Kozomara 
et al., 2019) and other 
sources described in the 
publication.

Table 3. Comparison of bioinformatics tools and parameters used at specific stages of the analysis by Ds-Seq and the independent 
investigation of the published datasets used to test Ds-Seq.

http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/1037/1037_supp_tab
http://dx.doi.org/10.14806/ej.29.0.1037


updates to the pipeline to permit specifying multiple 
names of plants of interest.

A difference was also recorded between the number 
of differentially expressed sRNAs in study A and the 
results from the pipeline. A total of 384 and 181 sRNAs 
were reported to be upregulated and downreg-ulated 
respectively by the pipeline using the parameter p-value 
< 0.05. This was different from the reported values in the 
independent study, where differentially expressed sRNAs 
were defined using an adjusted p-value < 0.05. A further 
step was taken on the results from the pipeline to extract 
differentially expressed sRNAs using adjusted p-value as 
was used in the independent study of Yang et al. (2018) 
to have a common basis for comparison. The result still 
showed a disparity in the pipeline-reported values and 
the independent analysis results, which could be due to 
omission in reporting some steps in the analysis or some 
parameters used in the separate study published by the 
authors.

Furthermore, a high number of differentially 
expressed sRNAs were reported by Ds-Seq with the 
data from study B. EdgeR (Robinson, 2009; McCarthy 
et al., 2012) was used in the pipeline and differentially 
expressed reads were defined by the user through 
the configuration file using a fold change cut-off and 
p-value. In Pitzalis et al. (2020), however, DESeq2 (Love 
et al., 2014) was used with extra parameters based on 
the number of reads used to filter the results. Therefore, 
using different tools (Maza, 2016; Costa-Silva et al., 
2017) could be responsible for the observed disparity in 
reported differentially expressed sRNAs.

The slight differences in the observed results will 
be addressed in the future release of Ds-Seq, especially 
those due to the use of different tools. We have plans to 
include more tools at various stages of the analysis to 
present users with options to choose from. 

For differential expression analysis, the pipeline has 
been tested successfully on samples with two and three 
biological replicates each but can support samples with 
more than three biological replicates. The next iteration 
of Ds-Seq will accommodate other alignment software 
for the reads mapping module and integration of a 
module to predict the gene targets of the sRNAs.

Importantly, to ensure the reproducibility of the 
results (Baker and Penny, 2016), the pipeline can be 
containerized from its Docker image obtainable from 
the Docker hub repository. Application containerization 
with Docker10 is employed to provide a consistent 
and self-contained software environment for running 
applications. Only the required dependencies of 
an application are installed before deployment to a 
host operating system. Docker containers have been 
demonstrated to promote reproducibility of genomic 
data analysis with minimal adverse effects on the 
outcome (Di Tommaso et al., 2015). Aside from ensuring 
a consistent environment for applications, this approach 
also eliminates software version compatibility issues in 
application deployment.
10https://www.docker.com

Conclusions
In this paper, we have presented Ds-Seq, an automated 
pipeline for in silico analysis of sRNAs which can be run 
from a UNIX/Linux machine command line interface 
or as a Docker container. The pipeline combines several 
open-source sRNA analysis tools, in-house Perl, Python 
and R scripts, into a single shell script that runs end-to-
end sRNA analysis from sRNA-Seq libraries with a single 
command. Although Ds-Seq was designed and applied to 
the study of plant host-pathogen interaction, it can also 
be adapted to other studies that seek to investigate the 
influence of abiotic factors on any plant with an available 
genome assembly. We have demonstrated the pipeline’s 
capabilities using two publicly available datasets, and 
the results obtained generally indicated agreement with 
the published results from the same datasets, although 
with some differences attributable to the use of different 
tools and analysis parameters. The observed differences 
between the published dataset and the results of this 
pipeline underscore the challenge of reproducibility of 
analysis results which can be eliminated with the use of a 
predefined analysis pipeline such as Ds-Seq in a Docker 
environment.
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datasets used for testing the pipeline were obtained 
from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) database for 
Study A using accession GSE113555, and Sequence Read 
Archive (SRA) for Study B using accession PRJNA508739. 
All the data produced by the pipeline have been reported 
in this paper and the supplementary files. 

A test data for the pipeline will be made available 
for review on request pending the time that it would be 
hosted permanently in a public repository.
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Key Points
•	 An in-silico automated end-to-end analysis pipeline, Ds-Seq, 

is presented for small RNA profiling from NGS data in a host-
pathogen interaction scenario.

•	 The pipeline has been tested with publicly available published 
datasets from host-pathogen interaction studies and the results 
showed general agreement with those obtained from the 
independent analysis of the datasets used.

•	 Ds-Seq containerization with Docker image promotes 
reproducibility of results through a consistent software 
environment.

•	 The pipeline features a modular structure that enables a user to 
choose modules of interest through a configuration file.

•	 Legible reports and results are presented as tab-delimited flat 
files for portability to other tools for further downstream analysis 
and publication-ready plots.
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