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it also has relevant practical implications to fur-
ther our understanding of population dynamics, 
evolution and mutation rates, and to understand 
the development of interesting traits, like bacte-
rial resistance to antibiotics. 

There is a relevant interest in solving, or at 
least understanding, the problem in detail; how-
ever, while growing a bacterial population in the 
laboratory is cheap routine work, analysing the 
evolution and selection of gene mutations ex-
perimentally is not so simple, as it would require 
genotyping of representative samples of bacte-
rial populations and assessment of the impact 
of each selected genotype on the viability of its 
carrier (Sniegowski et al., 1997).

Because experimental validation is inconven-
ient, it is desirable to model in silico what would 
happen in the test tube. The main problem now 
is being able to produce realistic simulations: as 
cell division is an exponential process, we soon 
find ourselves modelling large numbers of speci-
mens, whose mutation events must be tracked, 
and we need to collect statistically significant 
data.

Running these simulations has largely been 
constrained by technological limitations, result-
ing in reductionist models that (despite their 
shortcomings) have harvested useful insights on 
the problem (Wilke et al., 2001; Lenski et al., 1999; 
Adami et al., 2000; Taddei  et al., 1997; Johnson, 
1999). Despite Moore’s law, running a realistic 
simulation easily results in very long computation 
times, limiting its usefulness. More specifically, 
our estimates for the simulation we wanted to run 
were in the order of years of CPU time.

Our simulations use a Monte Carlo method: 
we repeat a basic experiment enough times to 
collect statistically sound results. Additionally, be-
cause each simulation experiment is independ-
ent from all others, by simply using a different 
seed, our approach may be generalised to any 
embarrassingly parallel system with a large num-
ber of non-communicating tasks.

Finally, because simulated population growth 
is affected by mutation rates and the effect of 
random mutations on viability, varying initial con-
ditions have a large impact on population size 
during the simulation, resulting in large variability 
of simulation run times, posing additional chal-
lenges and making ours a problem of more ge-
neric interest.
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Introduction
Building realistic population simulations is a 

typical embarrassingly parallel large-scale com-
putation. This kind of problem maps naturally to 
massively distributed architectures, like the EGEE 
Grid1 (Enabling Grids for E-science in Europe). 
Solving this instance therefore provides solid 
ground both for solving other similar tasks and for 
testing the adequacy of current technology.

Our main interest was to study the selection 
processes taking place in bacteria with different 
mutation rates. The problem of itself is interest-
ing for many reasons: from a theoretical point of 
view, it is a simplified model of the evolution of 
more complex organisms and ecosystems; but 

1 www.eu-egee.org

Abstract
Analysis of population evolutionary dynamics using re-
alistic models is a challenging task requiring access to 
huge resources. Estimates for simple models of population 
growth under different mutation and selection conditions 
yield running times of Central Processing Unit (CPU) years. 
As mutations are stochastic events, experiments can be 
split into many separate jobs, reducing to a large Monte 
Carlo-like problem that is embarrassingly parallel and thus 
maps perfectly on the Grid.
We have been able to run simulations with realistic popula-
tion sizes (up to 1,000,000 individuals) and growth cycles 
using the Grid with a ~190x efficiency gain, thus reducing 
execution time from years to a few days. This speed-up 
allows us to accelerate the simulation cycle, and work on 
data analysis and additional model refinements with mini-
mal delays and effort.
We have taken measures at various steps in the process 
to study the efficiency gains obtained. While our simple 
approach may arguably be far from achieving optimum 
efficiency, we were able to achieve significant gains. Here, 
we analyse Grid efficiency and discuss which benefits can 
be realistically expected with the current technology; we 
also provide useful advice for future Grid developers.

All the tools described are available under GNU’s Public 
License (GPL) from http://ahriman.cnb.csic.es/sbg/tiki-
download _ file.php?fileId=16
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Figure 1. A typical job.jdl file may be as simple or complex as needed.

Type = “job”;

JobType = “normal”;

VirtualOrganisation = “biomed”;

Executable = “job.sh”; 

StdOutput = “std.out”; 

StdError = “std.err”; 

InputSandbox = {“job.sh”, “program”, “input”};

OutputSandbox = {“std.out”,”std.err”, “result.dat”};

This paper deals with the implementation de-
tails of these simulations on the Grid. Our popu-
lation dynamics simulations are still being further 
refined, although preliminary results from the 
analysis involving various combinations of differ-
ent mutator phenotypes, selection coefficients 
and mutation rates led to two main scenarios, 
demanding more extensive analysis; these were 
presented as part of the 2007 Workshops, Current 
Trends in Biomedicine series, “Stress, stress re-

sponses and mechanisms of evolvability” at the 
Universidad Internacional de Andalucia, Baeza, 
Spain, 2007, and will be fully discussed once 
the analysis and experimental verification have 
been completed in a separate publication.

Methods

Simulation code
The population dynamics simulation was based 
on in-house code written in Fortran95, requiring 
no additional libraries or dependencies. The 
long run-times required for a realistic simulation 
necessitated the problem to be split into sub-
problems suitable for running on the EGEE Grid. 
All programs were compiled statically using the 
Gfortran compiler to avoid library dependencies 
on remote hosts.

Each experiment tests a set of constraints 
under a large variety of initial parameters (up to 
1,000), executing a sensible number of simulat-
ed culture cycles (up to 100). The initial model 
simulated laboratory conditions, using in each 
culture cycle an inoculate of individuals with 
several genes, taken from a previous culture, 
that would undergo many replication, mutation, 
competition and selection events until a sensibly 
large colony size  (usually of the order of a million 
individuals), or number of replication events, was 
reached.

Output of each simulation run was used to fur-
ther refine and optimise the initial model, making 
it more meaningful. This refinement process is still 
an ongoing concern.

Owing to the large variation of constraints, 
run-times also show large variation, as may be 
expected: a population suffering more deleteri-
ous mutations grows less, its reduced number of 
individuals resulting in lesser simulation resource 
and time requirements.

Grid parallelisation
The simulation was conducted to mimic many in 

vivo experiments under controlled starting condi-
tions. Because mutation is a stochastic process, 
we could split work into separate runs using differ-
ent random seeds. To manage jobs, we devel-
oped tools that have been progressively refined 
to adapt to various issues and shortcomings.

The job-management scripts were devel-
oped as shell scripts, and can be coarsely clas-
sified into three categories: a set of scripts to 
generate the large number of jobs required; a 
set of generic scripts to launch jobs, monitor their 
status and collect results; and a set to process 
the results into manageable statistics.

Job management was designed as a set of 
generic scripts that can be used for any kind of 
non-specific job: the system expects all jobs for 
an experiment to be collected in a single directo-
ry, with each job being stored in a separate, self-
contained sub-directory with all data and soft-
ware needed for the computation. Submission 
works by traversing all job sub-directories, mak-
ing links to generic Job Definition Language (JDL) 
and execution script files, and independently 
sending each job to an appropriate resource 
broker. Failure recovery involves traversal of the 
job sub-directories to search for aborted, failed 
or silently dead jobs and resubmitting them up 
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Figure 2. A typical job.sh script.

#!/bin/bash

#

chmod 755 program

./program < input

Figure 3. A typical job-generation command.

for i in {10..50..10}; do 

    for j in {1..20}; do 

            job=$i-`printf %02d $j` ;

            mkdir $job

            cd $job

            ln ../../exe/program .

            echo “$i $j” > input

            cd ..

        done

    done

done 

to a maximum number of tries. Data collection 
checks job status for successful termination and 
retrieves the output from the Grid into the job di-
rectory. The whole process is managed from a 
higher-level script that controls the timing of sub-
mission, failure recovery and output retrieval until 
all jobs have successfully finished.

With generic job management in place, it is 
now easy to automate generation of the large 
numbers of jobs required: only a generic execu-
tion script and JDL file need to be written, and 
copied by the submission system to the job sub-
directory; and a simple script or shell loop-com-
mand are also needed to create the job sub-di-
rectories, copy (or better, hard link to save space) 
any common files, and generate any specific 
files depending on job parameters (Figures 1, 2 
and 3).

Data collection and analysis were similarly 
performed by a set of scripts or shell commands: 
all that was needed was a loop traversing every 
job sub-directory and parsing output to extract 
relevant information.

Execution of data collection
In order to assess the impact of Grid architecture 
on the efficiency gains obtained, we inserted 
in our code specific instructions to collect tim-
ing data at various key steps, so that we could 

measure the time invested at each step and 
investigate its influence on overall performance. 
The steps chosen were as follows: start and end 
of job submission (s

0
, s

1
); start and end of job ex-

ecution (e
0
, e

1
) at the Working Node (WN); detec-

tion of job termination/start of result retrieval, and 
end of result retrieval (r

0
, r

1
).

Collecting times on the Grid requires addi-
tional care, as different steps will take place in 
different time zones. We took advantage of the 
fact that the Grid has a universal time and clock 
synchronisation, and measured time in Universal 
Coordinated Time (UTC) to avoid local offsets. 

Another issue worth considering is the underly-
ing WN architecture, as different machines may 
lead to different execution speeds. While this is 
intuitively true, we didn’t consider it because it 
must be coupled to an unknown factor: a given 
WN may be simultaneously running more than 
one job at different priorities, hence, perhaps 
counter-intuitively, a loaded high-speed com-
puter might perform worse than an old slower 
machine. Because there is no way to know which 
other tasks a given node is executing, at what 
priority, or for how long they overlap our job, this 
issue was not dealt with.

As our programs were compiled only for a 32-
bit architecture, we also did not examine archi-
tecture-specific (64- vs. 32-bit) differences.
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Results

Choice of computing system
From preliminary measures, we expected full ex-
periment simulations to need from one to sev-
eral years of CPU time for each experiment. This 
prompted us to seek other alternatives. Our two 
main options were the Marenostrum massively 
parallel supercomputer and the EGEE Grid. We 
opted for the Grid owing to its simplicity and im-
mediate availability.

The problem reduces to a very large Monte 
Carlo simulation of mutation events on a dy-
namically growing population. We could further 
simplify the simulation by dividing it into separate 
growth cycles, much like one would do in labora-
tory practice.

Running one simulation on the Grid
We first tried to shift the parallel/serial balance 
towards computation by trying to fit all growth 
cycles for a given parameter-set in one pro-
cess. One experiment would therefore require 
as many jobs as different initial conditions (hun-
dreds). Each job was submitted and monitored 
separately.

This results in many sleeping processes wait-
ing on the system for their monitored jobs to 
terminate, to the detriment of other concurrent 
users. Moreover, we observed that a discourag-
ingly high number of jobs (~40%) aborted on 
execution. Investigation showed that many sites 

maintain short-lived batch queues with execu-

tion times of 72 hours or less. Because our prob-
lem could be further split with little extra work, we 
therefore decided to generate a larger number 
of shorter jobs.

Running a large simulation on the Grid
Next, we selected a job size that would ensure 
all jobs would run within the minimum queue 
lengths. Thus, instead of simulating 100 inde-
pendent cycles for each set of initial conditions, 
we ran 10 jobs of 10 cycles, each requiring be-
tween 8 minutes and 8 hours. 

We then changed job management to 
launch all the jobs at once and use a daemon 
that would periodically check job status, retrieve 
results, if complete, or resubmit if aborted, loop-
ing for a reasonable time to ensure all jobs had 
a chance to terminate. With the new approach, 

we achieved success rates of 90% and analysed 
the rest to determine the reasons for failure.

The most concerning kinds of failure were un-

specified job failures. As there is very limited infor-
mation on these failures, and they are relatively 
infrequent, there is little else to be done besides 
re-starting them. A special kind of problem that 
appears about one in every 9,000 jobs is that 
job submission hangs indefinitely. A more worri-
some anomaly is immortal jobs. These are jobs 
that remain in ‘Running’ status indefinitely, even 
after Grid-execution permissions have expired, 
probably because the job termination notifica-
tion has been lost. Finally, we were made aware 
of a side-effect of our approach on other users: 
while we had reduced the load on our front-end 
(the User Interface or UI node), we were using and 
overloading our default Grid Resource Broker 
(RB), which takes care of matching jobs to avail-
able resources. As the RB is shared among sever-
al sites, our load was affecting many other users. 
Other failures identified involved successful jobs 
whose output was lost, unrecoverable or empty. 

To solve submission problems, we extended 
our submission tool to use a time-out to detect 
stalled submissions, and to maintain a dynamic 
list of available RBs to load-balance submissions 
over them and avoid overloads. As for job fail-
ures, we added to the monitor script the ability 
to detect aborted or failed jobs and to resubmit 
them automatically. This simple device is useful 
for most problems except immortal jobs, which 
can only be detected if it is possible to impose 
an upper bound on execution times that may be 
used as a time-out or, if not, by submitting jobs 
more than once to collect the results of the first to 
finish, and kill the others.

Efficiency measures
Using the timings collected, we could measure 
for each job the time spent on submission (s

1 
- s

0
), 

time required by the Grid to allocate resources 
and start the job (e

0
 - s

1
), time taken by the job 

(e
1
 – e

0
), delay incurred to detect job termination 

(r
0
 – e

1
), and time needed to retrieve results (r

1
 – r

0
). 

In addition, by collating the individual statistics, it 
was easy to measure total times incurred at each 
step: e.g., for submission, it would be max{s

1
} – 

min{s
0
}), accumulated CPU time ( (e

1
 – e

0
)), total 

execution wall-clock time (max{r
1
} - min{s

0
}), etc.

The mean execution time for our jobs varied 
slightly across experiments, about 8-10K seconds, 
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yielding, in principle, a good balance between 
the serial and parallel parts. However, time vari-
ation ranged between ~500 and 115,000 sec-
onds. 

Our initial estimation of the benefit expected 
from the Grid was based on our perception that 
job submission was a quick process, which we 
further bound with a time-out. Indeed, our meas-
ures reveal that, for our problem (homogeneous 
jobs of ~800KB in size), submission times are in 
the range of 12-266 seconds, with a mean of 32 
seconds. Thus, the contribution of the submission 
step is very low in relation to the average running 
time (0.3-0.4%). Something similar happens with 
the final output retrieval step, which ranges be-
tween 5 and 150 seconds.

There are other sources of overhead though: 
once a job is copied to the Grid, there is a delay 
owing to internal Grid housekeeping. Similarly, 
once a job is finished, there is a delay until the 
overall Grid self-monitoring structure gets notified 
and the status is updated. 

From our measures, we conclude that this 
contribution is significant and poses a strong tax 
on the efficiency gains that can be achieved: 
the time taken for a job to start execution ranged 
between 30 seconds and 60K seconds, with an 
average of ~4-6K.

In order to put these measures in perspective, 
we need to know the number of CPUs actually 
used: we noted the host name of the WNs and 
counted the number of different machines ac-
cessed for each simulation experiment. Usual 
numbers were uniformly around 2,400 different 
machines for a simulation running 10,000 jobs.

Finally, by comparing the actual execution 
time of the job with the total wall-clock time 
taken, we can quantify efficiency gains: on av-
erage, jobs took ~9 times longer to run on the 
Grid, with the best case taking only 1.006 and 
the worst case 150 times more than local execu-
tion.

The massively parallel nature of the Grid, 
however, may compensate for these efficiency 
losses by allowing many jobs to run simultane-
ously. We added the total CPU time used for a 
10,000 job experiment and divided it by the total 
time taken. This total time includes job resubmis-
sion and hence accounts for more than 10,000 
actual jobs. For our problem, this consistently re-
sulted in a speed-up of ~190-fold relative to a 
single computer.

To quantify these benefits, let us denote N
n 
the 

number of nodes used, N
j
 the number of jobs to 

be run, t
j
 the time per job, t

s
 the time to submit a 

job, t
b
 the time used in Grid house-keeping tasks, 

t
e
 the execution time, and t

r
 the time required for 

result retrieval.

(1) The average time needed to run a job would 
be rebsj ttttt . 

(2) The time needed for sequential execu-
tion of our jobs on a single node would be  

je Ntt1 , whereas the time needed for 
sequential execution on the Grid (e.g., using 
only one node) would be jjg Ntt , which, 
as ej tt , means that Grid execution time is 
obviously longer for sequential jobs. 

(3) The time required for parallel execution on 
the Grid is more difficult to evaluate, and de-
pends on the number of nodes that can be 
used in parallel. Ideally, the Grid overhead 
times (t

s
, t

b
 and t

r
) should be close to zero, 

making the total time for parallel execution 

nNt /1 . Ideally, one would expect nodes to 
be reconsidered as soon as they finish a job, 
hence 1)/( sen ttN . However, as the Grid 
is geographically spread, one may expect a 
significant delay between the time a node 
finishes execution and the time an RB notices 
it is free. This has an impact on resource al-
location, which now takes longer, making 

1)/)(( sebn tttN . This means that we 
may expect to use up fewer nodes for short-
running jobs than for long-running jobs. We 
may also derive estimations for the maximum 
number of nodes that can be reached by us-
ing the maximum values of t

b
 and te and the 

minimum value of t
s
. 

We have already seen that both 
st ,  and   

rt  
are relatively small (~30 seconds each), and 
thus, as 

rse ttt , their impact tends to zero (0.3 
– 0.4% in our case). The scheduling overhead, 
however, is non-negligible. This delay becomes 
significant for small job numbers and for short 
jobs, hence reducing Grid speed-up2. On the 
other hand, as execution time decreases, the 
impact of the time required for sequential job 
submission increases. This can be ameliorated 

2 We have been able to verify these results on other kinds 
of problem with different numbers of jobs and execution 
times (Carrera, G., Solano, A., Valverde, J. R. and Carazo, 
J.M., unpublished).
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by partially parallelising job submission, but will 
still hit a sequential limit in data transfer from the 
submission node to the RB, and usually results in 
downgraded performance with respect to an 
ideal parallel execution.

Discussion
We needed to reproduce the behaviour of a 
population system whose experimental analysis 
would have been too cumbersome to simulate 
fully, being a stochastic process (mutations), 
which requires Monte Carlo-like methods. The dy-
namic behaviour of the system results in dramat-
ic population size changes, depending on the 
initial parameters (as a higher impact on survival 
fitness means slower growth and smaller popula-
tions), which in turn results in a wide variation in 
running times (various orders of magnitude).

The Grid gives any researcher immediate ac-
cess to huge computing power through a large 
number of geographically spread machines. For 
large parallel problems with reduced communi-
cation needs such as this, the Grid is an easy 
and powerful solution.

Optimising computation
Communications in the Grid have a larger laten-
cy and are slower than on a cluster; hence, it is 
desirable to keep them at a minimum in relation 
to parallel computation, according to Amdahl’s 
law. The best trade-off can be achieved when 
computation may proceed for long times with a 
large number of jobs, but most sites impose run-
time limits (usually 72h). 

If the number of jobs to perform is not too 
high, users may aim for the smaller number of 
sites that accept longer jobs on their queues. On 
the other hand, if users prefer to get results more 
swiftly by splitting the work among many shorter 
jobs, the number of available machines increas-
es considerably.

When execution times are fairly homogene-
ous, users may fine-tune jobs to fit on the allowed 
time-slot and optimise the communications/
computation ratio; in our case, large run-time 
variability forced us to plan for the worst-case 
scenario (ensure longest jobs would fit), resulting 
in relevant efficiency penalties for the shortest 
jobs.

Job management
For running a single job, the EGEE Grid offers con-
venient commands for the user. However, when 
the number of jobs grows to the order of thou-
sands, new problems arise that demand more 
sophisticated job-handling mechanisms: the 
incidence of aborted or failed jobs, for various 
reasons, may reach 10-15% of jobs, requiring the 
inclusion of additional job-management proce-
dures. The most immediate approach, and the 
one we have used here, is to detect and re-start 
failed jobs up to a maximum number of times, 
but other approaches are possible: e.g., launch-
ing various instances of the same job, taking the 
results of the first to finish and discarding all oth-
ers, or waiting for various jobs to finish and com-
paring their output for additional resilience.

As the number of jobs increases into the tens 
of thousands, new issues need to be consid-
ered. First, we reduced overload over the RB by 
performing some load balancing over all avail-
able hosts. As RBs themselves may also fail, a 
dynamic detection and recovery mechanism 
for failing RBs was added too. Second, very rare 
events need to be considered and dealt with, 
either manually (if their incidence is low enough 
and circumstances allow) or automatically. The 
most relevant of these is probably jobs hanging 
on submission, as this may stop the whole experi-
ment; stalled submission can be conveniently 
dealt with by implementing a simple time-out 
mechanism. 

A different problem is posed by immortal 
jobs, which remain eternally in ‘running’ state. This 
may be easy to spot if upper-bound estimation 
of job run-time is possible, so that jobs exceed-
ing it can be considered lost and re-started; but 
when there is high variability in run-times (as was 
our case), or there is no easy way to predict an 
upper bound, detection of these jobs becomes 
increasingly difficult, as the long run-time might 
be inherently correct. In such cases, possible so-
lutions are: 

(we used ~80 hours) detect, kill and re-start 
unfinished jobs;

to finish, killing all other copies.
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Efficiency considerations
We have taken timing measures at the various 
steps avoiding use of our local cluster and mak-

ing sure jobs were freely allocated to any WNs 

by the Grid, so that measures include real-world 
effects. Timing checkpoints were taken using UTC 
to enforce a common time frame.

Regarding Grid efficiency, we can see that 
the submission process is efficient. The same can 
be said of result retrieval. Consequently, their im-
pact is almost negligible. This is demonstrated by 
our finding a minimum efficiency loss of 0.006 
for a Grid job not executed on our local cluster. 
Once the job is submitted, jobs suffer a house-
keeping delay until execution. In our experience, 
job scheduling took a significant amount of time 
(on average, 4-6K seconds) with large variabil-
ity. Given our experiment design, we did not take 
accurate measures of Grid house-keeping after 
jobs finished: it is possible that there were large 
delays, which we didn’t detect because our data 
were actually available when we performed the 
test. Nevertheless, our results suggest that this fi-
nal step may be fairly quick, taking perhaps a 
few minutes, but this needs confirmation.

With these data at hand, we can already 
draw several conclusions, which can be used as 
advice for Grid usage. First, resource manage-
ment on the Grid is undoubtedly the area where 
biggest efficiency gains can still be achieved. If 
efficiency is a concern, it may be worth consid-
ering using alternate scheduling mechanisms, 
such as those provided by GridWay (Huedo et 

al., 2004), currently part of the Globus Toolkit 
(Foster and Kesselman, 1997) and planned for 
inclusion on gLite3.

For single jobs, efficiency may reduce to as 
little as 1.006 or as much as 150 times; however, 
on average, it will be reduced by about one or-
der of magnitude. Thus, if the single job to be 
run is a Message Passing Interface (MPI) paral-
lel job to be launched against a big (more than 
10-node) cluster, it may compensate for the Grid 
inefficiency. If the job takes too long and the 
system cannot be tied for that amount of time 
(e.g., a shared desktop), or if the local system is 
already overloaded (e.g., a time-sharing system 
with too many CPU-bound processes), then the 
Grid provides a convenient way to run jobs that 
otherwise would be impossible, difficult or very 
slow to complete locally.

3 http://glite.cern.ch

For large numbers of jobs, the Grid provides 
a way to speed up problems and deliver quicker 
responses, which may prove successful for most 
researchers. For instance, we were far from the 
maximum theoretical linear speed-up (10,000 
times for 10,000 independent processes), and 
even from the practical speed-up (2,400 times 
for the 2,400 different CPUs we could harvest), 
but we still could accelerate our problem 190 
times, which allowed us to run in 1½ days (1 day 
14h 01m 42s) a project that otherwise would have 
taken almost one year (313 days 04h 39m 33s), 
or in 4 ½ days (4 days 19h 38m 37s) a project 
requiring 2 ½ years (930 days 02h 25m 20s) of 
CPU time.

It is worth noting that our low efficiency was 
partly the result of our unequal run-times, which 
prevented reaching a better parallel/serial ratio. 
Higher speed-ups should be possible for better-
behaved problems, or with more refined job-
management strategies.

Conclusion
We have been able to run large-scale popula-
tion dynamics simulations on the Grid with rela-
tively little effort: no changes were needed to 
the simulation software, work was split into suit-
ably-sized chunks for execution, and job man-
agement was handled by relatively simple shell 
scripts. In the process, we had to deal with and 
solve a number of problems, developing gener-
ic tools that are available under the GNU public 
license4 from the author.

Each experiment involved large numbers of 
jobs (usually 10,000), allowing us to collect sta-
tistical data to monitor Grid performance and 
efficiency gains. We have identified Grid house-
keeping as a major contributor to reduced effi-
ciency, although we could still achieve significant 
speed-ups (~190x) using thousands (>2,400) of 
CPUs, allowing us to solve in days a problem that 
would otherwise have taken years to complete. 
Our results are in line with observations on other 
applications by our group and others (Jacq et 

al., 2007), and lay the basic foundation for un-
derstanding the main issues affecting Grid de-
velopment for large embarrassingly parallel ap-
plications.

4 http://ahriman.cnb.csic.es/sbg/tiki-list _ file _ gallery.
php?galleryId=1
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