An Integrated RNA-seq Atlas of the Murine T-Helper Cell Transcriptome

Andrew Deonarine

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK http://www.mrc-Imb.cam.ac.uk/tcb/

T-helper cells play an important role in mediating the immune response, and with the advent of next generation sequencing, significant insights can be gained into the T-helper cell transcriptome. One of the barriers to analyzing next-generation sequencing data, such as that generated by RNA-seq analyses, is that many of the statistical properties concerning quantification (ie. RPKM [1] vs. FPKM [2]), normalization [3], and differential expression (using methods such as edger [4], DESeq [5], and Cuffdiff [6]) of the data are still not clearly understood. Building on previous investigations into the bimodality of transcript expression [7], a computational pipeline was created to integrate various methods of expression quantification, cell type clustering, differential expression analyses, gene annotation methods, and novel transcript identification into a murine T-helper cell expression atlas. By integrating these various analyses, it was possible to identify key signature genes (transcription factors, cytokines, receptors, and other molecules) that distinguish the various T-helper cell types from each other, in addition to novel transcripts. This expression atlas, which is easily accessible as a user-friendly online resource at http://www.thelpercell.com, will form the basis for future investigations into immune regulation and function using network-based analyses.

This work is relevant to the goals of SEQAHEAD because it represents a major step forward in the integration and comparison of various methods of expression quantification, differential expression analysis, and annotation of RNA-seq data. The computational principles presented here could potentially be applicable to many other fields of molecular biology and medicine.

References

- 1. Mortazavi, A., Williams, BA., McCue K., Schaeffer, L., Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. *Nat Methods* (2008) 5: 621-8.
- 2. Roberts, A., Trapnell, C., Donaghey, J., Rinn, JL., Pachter, L. Improving RNA-Seq expression estimates by correcting for fragment bias. *Genome Biol* (2011) 12: R22.
- 3. Robinson, MD., Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol* (2010) 11: R25.
- 4. Robinson, MD., McCarthy, DJ., Smyth, GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* (2010) 26: 139-40.
- 5. Anders, S., Huber, W. Differential expression analysis for sequence count data. Genome Biol (2010) 11: R106.
- 6. Trapnell, C. Cufflinks Manual. Downloaded from http://cufflinks.cbcb.umd.edu/manual.html on Sept. 12th, 2011.
- 7. Hebenstreit, D., Fang, M., Gu, M., Charoensawan, V., van Oudenarrden, A., Teichmann, SA. RNA sequencing reveals two major classes of gene expression levels in metazoan cells. *Mol. Syst. Biol* (2011) 7: 497.

Relevant Web sites

8. http://www.thelpercell.com