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Motivation and Objectives
Gene networks (GNs) have become one of the 
most important approaches for modelling gene-
gene relationships in Bioinformatics (Hecker et al, 
2009). These networks allow us to carry out studies 
of different biological processes in a visual way. 

Many GN inference algorithms have been 
developed as techniques for extracting biologi-
cal knowledge (Ponzoni et al, 2007; Gallo et al, 
2011). Once the network has been generated, 
it is very important to assure network reliability 
in order to illustrate the quality of the generated 
model. The quality of a GN can be measured by 
a direct comparison between the obtained GN 
and prior biological knowledge (Wei and Li, 2007; 
Zhou and Wong, 2011). However, these both ap-
proaches are not entirely accurate as they only 
take direct gene–gene interactions into account 
for the validation task, leaving aside the weak (in-
direct) relationships (Poyatos, 2011).

In this work the authors present a new meth-
odology to assess the biological coherence of a 
GN. This coherence is obtained according to dif-
ferent biological gene-gene relationships sourc-
es. Our proposal is able to perform a complete 
functional analysis of the input GN. With this aim, 
graph theory is used to consider not only direct 
relationships but indirect ones as well.

Methods
The aim of our proposal is to evaluate the func-
tional coherence of an input GN. The coherence 
is calculated according to current gene-gene 
interaction knowledge which is stored in public 
biological databases (DB). Thus, graph theory 
is applied with the aim of considering all gene-
gene relationships (i.e. direct and indirect rela-
tionships) presented in the Input Network (IN).

Our approach works in various steps. First,the 
IN and the DB are converted into distance matri-
ces (DM) using Floyd-Warshall algorithm (Asghar 
et al, 2012). This approach is a graph analysis 
method that solves the shortest path problem. 
This algorithm uses an adjacency matrix to com-

pute the minimum path for every pair of genes. 
In this sense, the shortest path between two ver-
tices is computed by incrementally improving 
an estimate on the shortest path between those 
vertices, until the estimate is optimal. Hence, 
the minimum distance of all gene pair combi-
nations are computed and stored in DMin and 
DMdb, respectively. Furthermore, a distance 
threshold (δ) is used to exclude relationships that 
lack biological meaning. This threshold denotes 
the maximum distance to be considered as rel-
evant in the DM generation process. Thus, if the 
minimum distance between two genes is great-
er than δ, then no path between the genes will 
be assumed.

Once the distance matrices have been ob-
tained, they are combined to generate a new 
one. The new matrix, hereafter called Coherence 
Matrix (CM), contains the existing gap between the 
common genes in either the DMin and the DMdb.

Where CM(i,j)= |DMin(i,j) – DMdb(i,j)| denotes the 
coherence of relationship between gene gi and 
gene gj with regard to the information stored in 
DB. Note that, relationships between genes within 
IN and DB will be only considered to generate 
CM. It is not possible to establish the quality of 
the rest of the relationships. DB contains no infor-
mation to ascertain whether the relationships are 
biologically relevant or not.

According to the coherence values stored in 
CM and to an accuracy coherence level (θ), the 
differences and similarities between the GN and 
DB could be obtained. The differences are classi-
fied as false positives and  false negatives, while 
the similarities as true positives and true negatives. 
Therefore, if CM(i,j) is greater than θ it will be con-
sidered as a false positive, while if it is less than or 
equal to θ, it will be computed as true positive. In 
case there is no path between gi and gj in the  IN, 
neither in DB (IN(i,j)=DB(i,j)=infinite), it will be con-
sidered as a true negative. Nevertheless, if there is 
no path in IN but there is in DB, it will computed as 
a false negative.
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Results and Discussion
In order to assess the robustness of our proposal, 
we present a set of analysis of different yeast cell 
cycle networks using four prior biological know-
ledge data sets. 

Input networks were produced applying four 
inference network techniques (Soinov et al, 2003; 
Bulashevska and Eils 2005; Ponzoni et al, 2007; 
Gallo et al, 2011) on the well-known yeast cell 
cycle expression data set (Spellman et al, 1998). 
Finally, the functional coherence of  GNs gene-
rated is measured using our proposal according 
to the gene-gene interaction knowledge stored 
in BioGRID (Stark et al, 2010), KEGG (Kanehisa et 
al, 2012), SGD (Cherry et al, 2012) and YeastNet 
(Lee et al, 2007).

Multiple studies were carried out using differ-
ent threshold value combinations. δ and θ have 
been modified from one to five, generating 25 
diffe-rent combinations. The results show that 
the higher δ values, the greater is the noise in-
troduced. Coherence level threshold (θ) shows 
similar behavior; the lower θ, the smaller is the 
noise. The most representative result, summa-
rized in Table 1, was obtained for δ=4 and θ=1. 
This combination has a biological meaning. For 
each gene, only the interactions in a radius of 
four should be considered as relevant. Moreover, 
they ought to have a difference no greater than 
1 to be considered as valid. 

Table 1 shows that inference method pro-
posed by Gallo (GRNCOP2) generates the most 
reliable result, although Ponzoni technique 
(GRNCOP) provides the best result in three of 
the four data sets. Soinov approach obtains the 
worst values.

These results are consistent with the experi-
ment carried out in (Ponzoni et al, 2007) and 
(Gallo et al, 2011). GRNCOP was successfully 

compared with Soinov and Bulashevska ap-
proaches, while Gallo et al presented a detailed 
analysis of the performance of GRNCOP and 
GRNCOP2, where the last one shows the most 
stable result. These behaviors are also found in 
the obtained results. GRNCOP presents better 
coherence values than Soinov and Bulashevska 
in BioGrid, SGD and YeastNet. Similarly, GRNCOP2 
obtains more stable values than GRNCOP, espe-
cially for F-measure.
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