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A strategy to reduce technical variability and bias in RNA sequencing data
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Motivation and Objectives
In the last decade, Next-Generation Sequencing 
(NGS) technologies have been extensively ap-
plied to quantitative transcriptomics, making 
RNA sequencing (RNA-seq) a valuable alterna-
tive to microarrays for measuring and compar-
ing gene transcription levels (Wang et al., 2009). 
In this framework, the millions of sequences ob-
tained through NGS are aligned to a reference 
genome or transcriptome, and counts, i.e. the 
number of reads aligned to each gene, give a 
digital measure of gene expression. Given that 
longer genes are more likely to be sequenced 
than shorter ones, gene counts depend not 
only on the true gene expression, but also on 
its sequence length. Several approaches have 
been explored to reduce length bias a posteriori, 
namely after that read counts have been com-
puted (Mortazavi et al., 2008; Bullard et al., 2010; 
Hansen et al. 2012; Risso et al., 2011), or to pro-
vide a direct and unbiased estimate of transcript 
abundances (Trapnell, 2010). In addition, counts 
are biased toward highly transcribed genes, 
so most of the reads sequenced in a sample 
arise from a restricted subset of highly expressed 
genes (Robinson and Oshlack, 2009).

The present work is aimed at assessing techni-
cal variability and biases of RNA-seq counts, and 
exploring an alternative measure of exon expres-
sion, which is less biased toward long or highly 
expressed genes, thus requiring no length nor-
malization, and characterized by a lower techni-
cal variability.

Methods
We consider two different experiments (Bullard 
et al., 2010; Griffith et al., 2010) with multiple 
technical replicates. Raw reads were aligned 
to the reference genomes using TopHat v1.2.0 
(Langmead et al., 2009) and summarized on 
Ensembl exons using bedtools 2.15.0 (Quinlan 
and Hall, 2010) to compute read counts. We con-
sider exon counts rather than transcript counts to 

avoid introducing biases when dealing with alter-
natively spliced exons. We computed counts as 
the total number of reads that align to an exon 
(referred as totcounts in the following). As an al-
ternative approach, we exploited the per-base 
read coverage to obtain counts for every posi-
tion along each exon sequence. The measure 
of gene expression assigned to an exon, called 
maxcounts from here on, was then calculated 
as the maximum of its per-base counts. Both 
totcounts and maxcounts were normalized with 
the Trimmed Mean of M-values approach (TMM, 
Robinson and Oshlack, 2009) to correct diffe-
rences in sequencing depth across libraries. In 
addition, we computed Reads Per Kilobase of 
exon model per Million mapped reads (RPKM, 
Mortazavi et al, 2008), calculated by dividing 
totcounts, not normalized via TMM, by the total 
number of reads mapped in each library, in mil-
lions, and by exon length, in kilobases.

Results and Discussion
To investigate the bias due to highly expressed 
exons, we computed cumulative counts for all 
replicates in MAQC-2 and Griffith’s data sets. In 
MAQC-2 data (results not shown), when consider-
ing totcounts, about 3-5% of exons account for 
50% of total exon counts and 27-32% of exons 
account for 90% of total exon counts, showing 
that a great fraction of counts belong to a re-
stricted subset of exons. Differently, maxcounts 
are more evenly distributed across exons: 7-8% 
of exons account for 50% of total counts and 44-
45% of exons account for 90% of total counts. 
RPKM distribution lies in between that of max-
counts and totcounts, with 5-7% of exons ac-
counting for 50% of total RPKMs and 36-38% of 
exons accounting for 90% of total RPKMS. Also 
with Griffith’s data (Figure 1A), maxcounts have 
the less steep cumulative distribution curves. 

We also investigated length bias at single-ex-
on level using smoothed scatter plots of counts/
RPKMs versus exon-length, in log-log scale (see 
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Figure 1B for results on Griffith’s data). These 
plots show an increasing pattern of totcounts 
in dependence of exon-length, meaning that 
longer exons tend to have higher counts than 
shorter ones (Pearson’s correlation r=0.38 for 
MAQC-2 and r=0.43 for Griffith). On the con-
trary, maxcounts are not correlated with exon-
length (Pearson’s correlation r=0.10 for MAQC-2 
and r=0.01 for Griffith). RPKMs do not show the 
increasing pattern of totcounts, and are in fact 
characterized by negative correlation with exon 
length (Pearson’s correlation r=-0.28 for MAQC-

2 and r=-0.29 for Griffith), meaning that dividing by 
exon length over-corrects length bias in shorter ex-
ons. Plots are reported for one library of Griffith’s data 
set, but the same patterns are confirmed across all 
libraries of the two data sets (results not shown). 

Finally, we assessed variance of totcounts, 
RPKMs and maxcounts across technical rep-
licates, using a cubic-spline fit of the variance 
versus the mean of log-counts/log-RPKMs (Figure 
1C): in both data sets maxcounts have a lower 
variance with respect to totcounts. Anyway, on 

Figure 1: Diagnostic plots of totcounts, RPKMs and maxcounts: (A) distribution of exon counts/RPKMs in Griffith’s data; (B) 
smoothed scatter plots showing dependence of counts/RPKMs over exon length for one Griffith’s library; (C) variance of 
counts/RPKMs across technical replicates. 
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MAQC-2, RPKMs provide the lowest technical 
variance.

In summary, we confirm that totcounts strongly 
depends on the length of the feature they are sum-
marized on, even when considering exons in place 
of genes. Using RPKMs, that normalize totcounts 
by exon length and sequencing depth, reduces 
technical variability but does not completely re-
move exon length bias. We propose an alternative 
measure of exon expression, maxcounts, which is 
less biased toward long or highly expressed genes 
than totcounts and RPKMs, and whose technical 
variability is lower than or comparable to that of tot-
counts and RPKMs, respectively.

We are now working on a refinement of this 
measure, to make it more robust to sequencing 
and mapping biases. In addition, we are assess-
ing the accuracy and precision of totcounts and 
maxcounts in assessing the real RNA abundanc-
es using publicly available data sets for which 
spike-in RNAs measures are available. Future 
studies will focus on the definition of transcrip-
tional models that could be used to aggregate 
maxcounts at gene or transcript level.
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