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Motivation and Objectives
Because of the amount of electronic literature 
now available, it is challenging for biologists to 
search biomedical corpuses for any kind of de-
sired information beyond simple text retrieval. 
Several tools have been developed to make text 
mining easier for them. Some of these tools focus 
on extracting biomedical terms; such as protein 
names and biological processes, given any input 
text. The tools COREMINE Medical  (http://www.
coremine.com, last accessed on 25 September 
2012) and GoPubMed: http://www.gopubmed.
com, last accessed on 25 September 2012) are 
just two examples. Other tools apply rule-based 
strategies to relate biomedical concepts to each 
other. E.g., BITOLA (http://ibmi.mf.uni-lj.si/bitola/
last accessed on 25t September 2012) (Hristovski 
et al., 2005). 

We have been developing a methodology 
and tool to discover genes implicated in any 
given disease or disorder. In fact, our tool takes 
from the user any free text query as an input and 
attempts to identify those genes most strongly 
linked to the query. As an output, the tool returns 
an ordered list of the best genes matching the 
query. The core work of our tool is based on text 
mining. Basically, each gene is linked to a profile 
that contains the biological terms that are most 
significant for it. Similarly, we link the input query 
to a corresponding keyword profile. The genes 
appearing at the top of the output list are the 
ones whose profiles are highly similar to that of 
the input query.

Methods
The text mining strategies we use in our work are 
applied to the biomedical abstracts published in 
PubMed (http://www.ncbi.nlm.nih.gov/pubmed/, 
last accessed on 25 September 2012). We divide 
our work into two phases: a background phase, 
and a live phase. In the background phase, we 
collect all the abstracts annotated to every gene 
described in Entrez Gene (http://www.ncbi.nlm.
nih.gov/gene/, last accessed on 25 September 

2012). For this, we use GeneRIF http://www.ncbi.
nlm.nih.gov/gene/about-generif last accessed on 
25 September 2012), which provides functional 
annotation between genes and PubMed refer-
ences. Afterwards, we index all the referenced 
abstracts via MetaMap (http://metamap.nlm.
nih.gov/, last accessed on 25 September 2012) 
(Aronson, 2001), which maps the given biologi-
cal text to the Unified Medical Language System 
(UMLS) Metathesaurus (http://www.nlm.nih.gov/
research/umls/, last accessed on 25 September 
2012) (Bodenreider, 2004). Thus for each gene, we 
could maintain a list of UMLS biomedical terms 
that functionally-describe it. We call this list a gene 
keyword profile. Then for each gene, we build an-
other weighted profile in the form of a vector of 
Term Frequency-Inverse Document Frequency 
(TF-IDF). For a given gene, each entry in the vector 
measures how relevant a specific UMLS term is to 
the gene. We refer to the whole set of gene vec-
tors as the “reference matrix”. An example of this 
reference matrix is shown below in Table 1.

In the live phase of our work, we take a 
free text query as an input from the user (e.g., 
sleep disorders). Then, we use the E-utilities from 
PubMed to retrieve the corresponding abstracts 
that are relevant to the user query. And as we 
did with the genes in the background phase, 
we generate a keyword profile for the query and 
consequently a corresponding TF-IDF vector. 
Finally we match this query vector against all the 
gene vector entries in the reference matrix. Each 
match corresponds to a score that is calculated 
via a dot-product. The higher the matching score 
of a given gene vector entry, the more probably 
the gene relates to the user query. We also take 
into account the frequency of citation of a given 
gene. So genes appearing early in the ordered 
output list, do not only share the most similar pro-
files with the user query, but they are also cited 
by the highest number of references. Besides, we 
consider the fraction of common references be-
tween the query and the candidate genes as an 
additional scoring factor. As the number of com-
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mon references increases, the matching score 
of the candidate gene also increases.

Results and Discussion
The evaluation of the results is still ongoing. To val-
idate the quality of our results, we use as a bench-
mark the phenotype-gene annotation provided 
by the Human-Phenotype-Ontology (HPO http://
human-phenotype-ontology.org/, last accessed 
on 25 September 2012) (Robinson and Mundlos, 
2010). For every phenotype in this annotation, a 
set of linked genes are recorded. The links are pro-
vided based on the information about the pheno-
types of a given syndrome, and the genes known 
to cause that syndrome. Hence in our tool, we use 
each phenotype in the annotation file as a sepa-
rate free text input. Then for each gene output list, 
we measure the percentage of recall against the 
HPO annotation.

To assess the power of our tool, we use some 
general biomedical search systems as a base-

line (e.g., Gene Ontology http://www.geneonto-
logy.org/, last accessed on 25 September 2012). 
We are expecting our tool to perform better. That 
is because such general systems rely on clear 
evidence to associate a gene product with a 
given query (e.g., inference from experiments or 
by curators), while our tool digs deeper in all the 
published literature as discussed in the Methods 
section.
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Table1: An example of the Reference Matrix. The heading row corresponds to a set of different UMLS terms (DNA-binding, 
cancers, tumours, …, diabetes, and peptides). The heading column corresponds to two gene examples (Breast Cancer 
Type 1 (BRCA1), and Insulin (INS)). The numbers in each row (vector) correspond to the TF-IDF values of each UMLS term given 
the heading gene. For example, we observe that for BRCA1, the terms “Cancers” and “Tumours” have high TF-IDF values. 
This is related to the fact that they have high frequency of occurrence in the abstract texts annotated to BRCA1. Besides, 
we also observe that “DNA-Binding”, “Diabetes”, and “Peptides” have low TF-IDF values since they are not that frequent in 
the annotated text.

DNA-Binding Cancers Tumors … Diabetes Peptides

BRCA1 0.0 10.3 9.8 … 2.3 0.0

INS 0.0 3.7 0.0 … 10.5 9.3
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