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Motivation and Objectives
Next generation sequencing has revolutionized 
genome research and marked the start of a 
new era. These new technologies present us with 
unprecedented amounts of data - but with this 
sequencing data come errors that are not only 
platform specific but also depend on the library 
preparation method and the type of sequenc-
ing (i.e. amplicon or metagenome). Illumina’s 
sequencing platforms are currently among the 
most utilized platforms as they are able to gene-
rate millions of reads at relatively low cost – but 
Illumina error profiles are still poorly understood. A 
better knowledge of the error profiles is essential 
for sequence analysis and vital in order to draw 
valid conclusions. It has been reported that the 
major source of errors for Illumina are substitu-
tion-type miscalls (Archer et al., 2012). We de-
veloped a program that enables us to infer error 
profiles based on sequencing data from mock 
communities. This allows us to study and com-
pare different errors and biases introduced by 
different sequencing machines, different library 
preparation methods as well as different types 
of sequencing. Here, we present the metage-
nome error profiles for a mock community that 
was sequenced on the Genome Analyzer (GA) 
II for the standard Illumina library preparation 
method (TruSeq). Being able to infer error profiles 
for individual sequencing runs has the potential 
to greatly improve our ability to correct errors and 
thus enhance further sequencing analysis.

Methods
For our error profiles we used a diverse mock 
community that was constructed by combining 
even amounts of purified genomic DNAs (Shakya 
et al., 2013). The mock community consists of 49 
bacterial genomes and 10 archaeal genomes 
covering most phyla and the community also 
contains closely related species and strain pairs. 
We sequenced a sample of the mock community 
on the GA II. The libraries for the sample were 
prepared with the standard Illumina library pre-
paration method (TruSeq) with a starting amount 

of 500ng of DNA. This yielded about 6 million 
forward and reverse reads of 101bp. 

First, we aligned the reads with BWA (Li and 
Durbin, 2009) against the 59 reference genomes. 
Then we converted the files to SAM format and 
generated the MD tag with samtools (Li et al., 
2009). Based on the resulting files our program in-
fers position and nucleotide specific substitution 
rates. Whenever a substitution is encountered, 
we identify the reference nucleotide based on 
the MD tag and the substituting nucleotide on 
the read is determined based on the extended 
CIGAR string. The output of our program consists 
of four 4x101 matrices (one for each possible 
“original” nucleotide) for the set of forward and 
reverse reads, respectively, in which we store 
the number of observed substitution types for 
each position of the read. We then normalize 
these matrices as follows: We count the number 
of occurrences of, for example, A on the read 
for each position, add the number of detected 
substitutions from A to T, G and C, respectively, 
and subtract the number of substitutions from T, 
G and C, respectively, to A at this position. This 
accounts for errors and reflects the true number 
of A’s. In addition, our program computes the 
overall insertion and deletion rate. 

To verify our algorithm we extended our read 
simulation program (Schirmer et al., 2012) to ge-
nerate reads based on error profiles of the above 
described format. We simulated one million for-
ward and reverse reads based on the error pro-
files inferred from the GA II run. The error profiles, 
inferred from the simulated reads, concurred 
with the original error profiles used to simulate the 
reads and thus validates the algorithm. 

Results and Discussion
The GA II error profiles show a strong increase in 
the number of substitutions towards the end of 
the read. The average substitution rate for the 
forward reads is ≈0.004, where several spikes 
were observed across the first 10bp as well as 
an increase in substitutions starting from the mid-
dle of the read towards the end of the read. For 
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the reverse reads the average substitution rate is 
≈0.012. The start of the reverse reads also shows 
several spikes in the error profile but less com-
pared to the forward reads. Though smaller spikes 
were observed across the whole read length. 
The substitution rate starts to increase after the 
first third of the read and is overall significantly 

higher towards the end of the read compared 
to the forward reads. We observed the highest 
substitution rates for A and the lowest substitution 
rates for G for both forward and reverse reads 
(disregarding the first 10bp). Subsequently we 
examined the frequencies of the nucleotides for 
each position across the reads to test for possible 

Figure 1: Error profile for forward reads: The x-axis indicates the position on the read and the y-axis the substitution rate (# of ob-
served substitution/# of occurrences of the “original” nucleotide). Each subfigure represents one of the four possible original 
nucleotides for which different types of substitutions are indicated by different colors.
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(a) R1 reads: original nucleotide A
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(b) R1 reads: original nucleotide T
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(c) R1 reads: original nucleotide G
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(d) R1 reads: original nucleotide C
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artifacts, as these could explain the spikes in the 
error profile at the read-start. For metagenomic 
data sets we expect a uniform frequency distri-
bution across the reads for all nucleotides. Here, 
we identified fluctuations within the first 10bp that 
sufficiently account for the increased error rates 
across these positions. Separating the error pro-
files according to the different substitution types 
presented further insights. Figure 1 shows that - 
independent of the original nucleotide – a sub-
stitution with C is the most common error towards 
the end of the read. If the original nucleotide is a 
C a substitution with A is the most common error. 
Inferring error profiles for different sequencing 
machines, library preparation methods and se-
quencing types has great potential for error cor-
rection. It also enables us to infer error profiles for 
individual sequencing runs by including a mock 
community (e.g. instead of PhiX). We will extend 
our research to different sequencers, more library 
preparation methods and different types of se-
quencing to identify differences and similarities 
in the error profiles and as a possible guideline 
for experimental design.
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