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Motivation and Objectives
The Bgee database (database for Gene 
Expression Evolution; Bastian et al., 2008) pro-
vides information about genes that are ex-
pressed in different organs and tissues. In order 
to introduce RNA-seq results into Bgee we had to 
develop methodology for deriving expressed/un-
expressed calls for genes. Such detection calls 
can be used for characterization of the tissue 
gene expression profile. Additionally detection 
calls are widely used in transcriptomic studies for 
filtering the genes used for differential expression 
analysis, clustering samples or building more re-
liable classifiers (Archer and Reese, 2010). The 
goal of our work is to find an automatic way to 
define the cut-off value on a transcription level 
that allows discrimination between expressed 
and non-expressed genomic features for each 
library individually.

Methods
RNA-seq data preprocessing
Reads from RNA-seq libraries from experiment 
GSE30352 (Brawand et al., 2011) were mapped 
to gene models from Ensembl database and 
to selected intergenic regions of the reference 
genome. The mapping of the reads was per-
formed using TopHat2 (Trapnell et al., 2009). The 
maximum number of mapping sites allowed for 
a read was set to 1. The intergenic regions are 
chosen in such a way that the distribution of their 
lengths matches the distribution of lengths of the 
transcriptome. Reads that map to the features 
are summed up using the HTSeq-count software
(http://www-huber.embl.de/users/anders/HTSeq/). 
The RPK (read per kilobase) value for every fea-
ture is obtained by dividing the number of reads 
that match a given feature by its length.

The present/absent calls
Our approach to define present/absent calls is 
based on Hebenstreit et al., 2011. For each RNA-
seq library independently, we define a RPK cut-
off, k, for determining “present/absent” calls, set 
to be equal to the minimal value for which the 

ratio of relative abundance of intergenic regions 
and genes, with RPK values above k, is equal or 
lower than α (in Bgee, α = 0.05). In other words, 
a RPK threshold is defined for each sample inde-
pendently, such that a randomly chosen feature, 
from the set of genes and intergenic regions, with 
a RPK value above the threshold, has at least 
95% probability of being a gene.

Cut-off determination procedure
1) For every value of x define the ratio r:  r = nixNg 
/ ngxNi where:

    nix: number of intergenic regions with RPK va-
lues higher than x
    ngx: number of genes with RPK values higher 
than x
    Ni: number of all intergenic regions
    Ng: number of all genes

2) The cutoff value k is the minimal value of x for 
which r is equal or lower than α.

Results and Discussion
The procedure described for expression calls 
generation was applied to all samples from the 
analyzed dataset. In general we decided to use 
selected random intergenic fragments to esti-
mate transcription level coming from experimen-
tal noise or background activity of the transcrip-
tion machinery. Despite up to 4 times differences 
in the number of aligned reads between libraries 
the proportion of genes called expressed by our 
algorithm remained consistent among different 
samples reaching in case of mouse data 39.1% 
± 1.49 SD and human 34.4% ± 3.9 SD (56.4% ± 
2.22 and 71.59% ± 5.28 for protein coding genes 
respectively). In contrast only 3.4% ± 0.12 in case 
of  mouse intergenic regions and 4% ± 0.55 of 
human intergenic regions were above the cut-
off (example distributions of expression values for 
different types of genomic features is shown on 
Figure 1). Less than 15% and 20% of intergenic 
regions for mouse (n=17) and human (n=16) 
data accordingly were ever called “expressed”. 
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In contrary more than 80% of mouse and 90% of 
human protein coding genes were at least once 
called “expressed”. Moreover according to our 
results, among protein coding genes more than 
50% in case of human data and 40% in case 
of mouse data are expressed ubiquitously in all 
analyzed samples. If we took, as criterion of tran-
scription, the presence of at least one uniquely 
mapped read then many intergenic regions 
would have to be classified as expressed, which 
we believe would be less informative. Moreover, 
thanks to our methodology it is possible to avoid 
applying a single arbitrary cut-off for all libraries. 
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Figure 1. Distribution of log2 (RPK + 1e-08) values for different feature categories, dashed line specify cutoff. 


