
 EMBnet.journal 20 Technical noTes e698

page 1 of 4
(not for indexing)

Introduction
Advances in sequencing technology have led
to an exponential increase in the volume of se-
quencing data that is generated (Wetterstrand,
2013). The amount of data that is now gener-
ated poses a challenge to storage facilities,
especially for primary data. Currently, the cost
of sequencing is dropping faster than the cost
of storage space, and will probably continue
to do so in the near future (Komorowski, 2009).
Additionally, data processing can require stor-
age of intermediate analysis steps. Data com-
pression reduces the need for storage capac-
ity, and several compression methods have
been applied to raw sequence data (Grassi et
al., 2012; Bhola et al., 2011; Jones et al., 2012;
Howison, 2012; Bonfield & Mahoney, 2013; Hach
et al., 2012). The processing of sequence data
typically consists of several steps. Runs are often
split into separate samples, followed by removing
sequence tags or trimming of low quality reads.
Examples of popular pre-processing software in-
clude cutadapt (Martin, 2011), the FASTX-toolkit

(Gordon & Hannon, 2010) or Biopython (Cock
et al., 2009). These create one or more versions
of the original data file, thus tending to require
several times the original storage capacity. To
save storage capacity, processed versions are
often discarded, but in many cases these files
are saved to allow easy access to all interme-
diate steps without redoing the analysis. Moreover,
a growing number of researchers advocate the
publication of raw sequence data and code
to improve reproducibility of results (Peng, 2011;
Stodden, 2010; Barnes, 2010; Baggerly & Berry,
2011), which would be facilitated by having pro-
cessed intermediate files available. Given that
the differences between the original and a pro-
cessed version of the data are often minor, stor-
age and compression of only the differences
between versions would be far more efficient
than retaining complete versions.

For saving different versions of the same file,
several general-purpose applications are avail-
able, but the specific type of manipulation that
is performed in sequence data processing pre-

Abstract
This technical note describes fq _delta, a python module and shell script that enables the storage of processed versions
of fastq files generated by DNA and RNA sequencing technologies. By using Myer’s diff algorithm to perform per-character
comparisons between the original and processed fastq files, we generate delta files that describe the changes in the
processed fastq file relative to the original file. While the delta files are only a fraction of the original size (0.1 – 3%), they
allow lossless reconstruction of the processed fastq files. Depending on the number of processing steps, implementation
of this module will lead to a significant reduction in storage required for processing sequence data.

Availability:
Fq _delta is available for download at https://github.com/averaart/fq _ delta.

Fq_delta – Efficient storage of processed versions of fastq files

Andra Veraart1,2 , Henk-Jan van den Ham2, Maarten A. Bijl2, Arno C. Andeweg2,
Anita C. Schürch2

School of Communication, Media and Information Technology, Rotterdam University, Rotterdam, The Netherlands
2Dept. Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands

Received 11 July 2013; Accepted 2 December 2013; Published 5 March 2014

Veraart A et al.. (2014) EMBnet.journal 20, e698. http://dx.doi.org/10.14806/ej.20.0.698

Competing Interests: the authors have declared that no competing interests exist.

https://github.com/averaart/fq_delta
http://dx.doi.org/10.14806/ej.20.0.698

cludes their use. Processing often entails the re-
moval of several bases from each read. Existing
general purpose applications typically work on
a line-basis or block-basis, i.e. a fixed number
of bytes (e.g., diff1 and rdiff2, respectively). If one
base has changed, the complete line or block
will be stored instead of only the changed bas-
es. This behavior makes these applications inef-
ficient for storing processing steps in sequence
data analysis, and suggests that these data re-
quire a high-resolution method to efficiently save
processed sequence data files.

This paper describes fq_delta, a python
module to store differences between versions
of fastq files. This module compares strings on a
per-character basis and stores differences be-
tween them, thereby saving all changes into a
file that is a fraction of the processed fastq file.
Storage of the original file and delta files there-
fore enables full reconstruction of processed ver-
sions of fastq files.

Design and Implementation
Fq_delta uses the google-diff-match-patch li-
brary (Fraser, 2009), which implements Myer’s
diff algorithm (Myers, 1986). Fq_delta applies this
technique to fastq files.

Consider a given sequence line in a fastq file
containing the following string:

ACACGTAGTATACGGCATGCTACG

Assume the first 11 characters comprise a se-
quence tag that needs to be removed before
further analysis takes place, resulting in the fol-
lowing string:

1 pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.
html

2 linux.die.net/man/1/rdiff

ACGGCATGCTACG

In the delta file, this line would be listed as:

-11 =13

This describes that the first 11 characters of the
original line are removed and the subsequent 13
characters remain the same. Storing this descrip-
tion uses far fewer bytes than storing the com-
plete processed line. Even when storing a large

number of minor changes, this method is more
efficient than the standard command line diff
application. The processed string can be recon-
structed using the first string and the difference
between the first and second strings, as docu-
mented in the delta file.

Generating a delta file
Fq_delta expects two fastq files as input. The
first is assumed to be the original, the second a
processed version: i.e., fq_delta computes the
delta of the second input file relative to the first.
Four lines of each file are read, covering one se-
quence read. To ensure that related original and
processed sequences are matched, the identi-
fier lines (IDs) are first compared, excluding any
tab-separated values. If the IDs match, the dif-
ference between each line is written to a text file,
called the delta file. If the IDs do not match, the
read from the original file has evidently been re-
moved from the processed file (fq_delta thereby
assumes that the original and processed fastq
files have the same read order). This is written into
the delta file and the next four lines are read from
the original file. This process is repeated until the
end of the processed file has been reached. An

page 2 of 4
(not for indexing)

e698 Technical noTes EMBnet.journal 20

Table 1. Size reduction achieved by storing the processed fastq file in a zip archive, by storing an rdiff delta file in a zip ar-
chive and by using fq _ delta. File sizes expressed in Megabytes. Percentages are based on the processed fastq file size, as
indicated in the first column. The original, unprocessed fastq file was 802.5 MB.

fastq zipped fastq zipped rdiff delta fq_delta
fastq _ masker -q 10 765.29 225.58 (29%) 212.87 (28%) 7.19 (0.94%)
fastq _ masker -q 25 765.29 228.17 (30%) 227.49 (30%) 17.53 (2.3%)
fastq _ quality _ trimmer 740.10 221.32 (30%) 197.77 (27%) 2.11 (0.28%)
cutadapt 751.53 223.05 (30%) 89.68 (12%) 0.74 (<0.1%)
cutadapt trimmed only 41.59 11.47 (28%) 11.48 (28%) 0.82 (2.0%)
cutadapt untrimmed only 709.94 211.69 (30%) 81.38 (11%) 0.39 (<0.1%)
removed lines 306.58 90.67 (30%) 0.002 (<0.1%) 0.08 (<0.1%)

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://linux.die.net/man/1/rdiff
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://linux.die.net/man/1/rdiff

page 3 of 4
(not for indexing)

 EMBnet.journal 20 Technical noTes e698

md5 hash of the processed file is calculated and
written to a separate checksum file so that data
integrity can be verified when reconstructing the
file (fq_delta raises an error when these do not
match). Finally, the delta file and the checksum
file are compressed into one standard zip ar-
chive.

Retrieving a processed file
Fq_delta expects two files during retrieval: the
original fastq file, and the zip archive containing
the delta file that represents the processed ver-
sion. The delta file and checksum file are both
extracted from the zip archive. If the checksum
file is not found, the process is aborted immedi-
ately. The original file and the delta file are read
line by line. The delta line is applied to the original
line to reconstruct the processed line. The pro-
cessed line is either written to a new file or printed
to standard out. When the end of the delta file is
reached, the process is stopped, effectively ig-
noring the last lines that were in the original but
not in the processed versions.

Technical details
Fq_delta is written in Python 2.7 as a module. It
provides a class that implements the same func-
tions as typical file-like objects. The class is able
to use standard in or standard out as input or out-
put, respectively. Fastqfiles that are compressed
using quip (Jones et al., 2012) are decompressed
on-the-fly. Fq_delta assumes an unchanged
order of reads from one version to the other to
generate the delta file. The Fq_delta module
was tested in scenarios where data integrity was
deliberately compromised. In all cases, the ap-
plication detected the error and reportedit to the
user.

Fq_delta can also be used as a command-
line tool, using two additional shell scripts that are
provided with the module. The python module,
command line scripts and a test script are avail-
able at https://github.com/averaart/fq _ delta.

Results & Discussion
The application was tested using fastq _masker
and fastq _quality _ trimmer from the FASTX-
toolkit (Gordon & Hannon, 2010), and cutadapt
(Martin, 2011) on the first 2,500,000 reads of a
publicly available data-set (Uddenberg et al.,

2013) for Norway spruce (Picea abies; the test
shell script is available from the codebase). To
demonstrate that removed lines are handled
correctly, irrespective of their location in the file,
an extra test was performed where we removed
500,000 reads from the start, the middle and the
end of the example set.

Using fq_delta, the processed files were suc-
cessfully compressed and accurately repro-
duced, using the original file as a reference.
Table 1 illustrates the file sizes of the processed
files and the resulting delta files, showing a re-
duction in required storage of at least 97 percent.

The sizes of fq _ delta files were compared
with compressed versions of the processed files,
and both uncompressed and compressed ver-
sions of diff and rdiff files. In most cases, the un-
compressed diff and rdiff files were much larger
than the compressed fastq files; only the com-
pressed rdiff file was smaller in all cases (Table 1).
The fq _ delta files were an order of magnitude
smaller in all cases, except the “removed lines”
scenario.

The large difference between rdiff and fq_
delta can be explained by the coarse- and fine-
grained resolutions of the respective methods.
The rdiff algorithm is too coarse to efficiently reg-
ister small changes, whereas fq_delta works on
a per-character basis. This is illustrated by the ‘re-
moved lines’ test, where the fastq file was divided
into five continuous sections, two of which were
saved in the processed file. Only in this coarse-
grained scenario did rdiff perform better than
fq_delta.

In summary, fq_delta is able to store multiple
versions of a fastq file at a fraction of the usual
storage costs. None of the tools we are aware of
show the same efficiency. There are no require-
ments to the fastq files, except that the order of
the reads should be consistent between original
and processed versions. Especially combined
with compression of original files, fq_delta drasti-
cally reduces the amount of storage necessary
when processing sequence data.

Acknowledgements
This study was supported by the Virgo consortium,
funded by the Dutch government, project num-
ber FES0908, and by the Netherlands Genomics
Initiative (NGI), project number 050-060-452.

https://github.com/averaart/fq_delta

page 4 of 4
(not for indexing)

e698 Technical noTes EMBnet.journal 20

References
Baggerly KA & Berry DA (2011) Reproducible Research |

Amstat News. AMSTAT News Blog. http://magazine.amstat.
org/blog/2011/01/01/scipolicyjan11/ (accessed 11 June
2013).

Barnes N (2010) Publish your computer code: it is good enough.
Nature 467, 753. http://dx.doi.org/10.1038/467753a

Bhola V, Bopardikar AS, Narayanan R, Lee K & Ahn T (2011)
No-Reference Compression of Genomic Data Stored in F
ASTQ Format IEEE. http://dx.doi.org/10.1109/bibm.2011.110

Bonfield JK & Mahoney M V (2013) Compression of FASTQ
and SAM Format Sequencing Data. PloS one 8, e59190.
http://dx.doi.org/10.1371/journal.pone.0059190

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ et
al. (2009) Biopython: freely available Python tools for
computational molecular biology and bioinformatics.
Bioinformatics (Oxford, England) 25, 1422–3. http://dx.doi.
org/10.1093/bioinformatics/btp163

Fraser N (2009) google-diff-match-patch - Diff, Match and
Patch libraries for Plain Text. http://code.google.com/p/
google-diff-match-patch/ (accessed 16 May 2013).

Gordon A & Hannon GJ (2010) FASTX-Toolkit. FASTQ/A short-
reads pre-processing tools. http://hannonlab.cshl.edu/
fastx _ toolkit/ (accessed 31 May 2013).

Grassi E, Gregorio F Di & Molineris I (2012) KungFQ: a sim-
ple and powerful approach to compress fastq files. IEEE/
ACM transactions on computational biology and bioinfor-
matics / IEEE, ACM 9, 1837–42. http://dx.doi.org/10.1109/
tcbb.2012.123

Hach F, Numanagic I, Alkan C & Sahinalp SC (2012) SCALCE:
boosting sequence compression algorithms using locally
consistent encoding. Bioinformatics (Oxford, England) 28,
3051–7. http://dx.doi.org/10.1093/bioinformatics/bts593

Howison M (2012) High-Throughput Compression of FASTQ
Data with SeqDB. IEEE/ACM transactions on computation-
al biology and bioinformatics / IEEE, ACM 10(1), 213–218.
http://dx.doi.org/10.1109/tcbb.2012.160

Jones DC, Ruzzo WL, Peng X & Katze MG (2012) Compression
of next-generation sequencing reads aided by highly effi-
cient de novo assembly. Nucleic acids research 40, e171.
http://dx.doi.org/10.1093/nar/gks754

Komorowski M (2009) A History of Storage Cost. http://www.
mkomo.com/cost-per-gigabyte (accessed 31 May 2013)

Martin M (2011) Cutadapt removes adapter sequences
from high-throughput sequencing reads. EMBnet.jour-
nal 17, pp. 10–12. http://dx.doi.org/10.14806/ej.17.1.200

Myers EW (1986) AnO(ND) difference algorithm and its vari-
ations. Algorithmica 1, 251–266. http://dx.doi.org/10.1007/
bf01840446

Peng RD (2011) Reproducible research in computational sci-
ence. Science (New York, N.Y.) 334, 1226–7. http://dx.doi.
org/10.1126/science.1213847

Stodden V (2010) Reproducible Research. Computing in
Science & Engineering 12, 8–13. http://dx.doi.org/10.1109/
mcse.2010.113

Uddenberg D, Reimegård J, Clapham D, Almqvist C, Von
Arnold S et al. (2013) Early cone setting in Picea abies
acrocona is associated with increased transcriptional
activity of a MADS box transcription factor. Plant physiol-
ogy 161, 813–23. http://dx.doi.org/10.1104/pp.112.207746

Wetterstrand KA (2013) DNA Sequencing Costs: Data from the
NHGRI Genome Sequencing Program (GSP). http://www.
genome.gov/sequencingcosts/ (accessed 14 May 2013).

http://magazine.amstat.org/blog/2011/01/01/scipolicyjan11
http://magazine.amstat.org/blog/2011/01/01/scipolicyjan11
http://dx.doi.org/10.1038/467753a
http://dx.doi.org/10.1109/bibm.2011.110
http://dx.doi.org/10.1371/journal.pone.0059190
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btp163
http://code.google.com/p/google-diff-match-patch/
http://code.google.com/p/google-diff-match-patch/
http://hannonlab.cshl.edu/
http://dx.doi.org/10.1109/tcbb.2012.123
http://dx.doi.org/10.1109/tcbb.2012.123
http://dx.doi.org/10.1093/bioinformatics/bts593
http://dx.doi.org/10.1093/bioinformatics/bts593
http://dx.doi.org/10.1093/nar/gks754
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1007/bf01840446
http://dx.doi.org/10.1007/bf01840446
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1109/mcse.2010.113
http://dx.doi.org/10.1109/mcse.2010.113
http://dx.doi.org/10.1104/pp.112.207746
http://www.genome.gov/sequencingcosts
http://www.genome.gov/sequencingcosts

