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Introduction
Advances in sequencing technology have led 
to an exponential increase in the volume of se-
quencing data that is generated (Wetterstrand, 
2013). The amount of data that is now gener-
ated poses a challenge to storage facilities, 
especially for primary data. Currently, the cost 
of sequencing is dropping faster than the cost 
of storage space, and will probably continue 
to do so in the near future (Komorowski, 2009). 
Additionally, data processing can require stor-
age of intermediate analysis steps. Data com-
pression reduces the need for storage capac-
ity, and several compression methods have 
been applied to raw sequence data (Grassi et 
al., 2012; Bhola et al., 2011; Jones et al., 2012; 
Howison, 2012; Bonfield & Mahoney, 2013; Hach 
et al., 2012). The processing of sequence data 
typically consists of several steps. Runs are often 
split into separate samples, followed by removing 
sequence tags or trimming of low quality reads. 
Examples of popular pre-processing software in-
clude cutadapt (Martin, 2011), the FASTX-toolkit 

(Gordon & Hannon, 2010) or Biopython (Cock 
et al., 2009). These create one or more versions 
of the original data file, thus tending to require 
several times the original storage capacity. To 
save storage capacity, processed versions are 
often discarded, but in many cases these files 
are saved to allow easy access to all interme- 
diate steps without redoing the analysis. Moreover, 
a growing number of researchers advocate the 
publication of raw sequence data and code 
to improve reproducibility of results (Peng, 2011; 
Stodden, 2010; Barnes, 2010; Baggerly & Berry, 
2011), which would be facilitated by having pro-
cessed intermediate files available. Given that 
the differences between the original and a pro-
cessed version of the data are often minor, stor-
age and compression of only the differences 
between versions would be far more efficient 
than retaining complete versions.

For saving different versions of the same file, 
several general-purpose applications are avail-
able, but the specific type of manipulation that 
is performed in sequence data processing pre-
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cludes their use. Processing often entails the re-
moval of several bases from each read. Existing 
general purpose applications typically work on 
a line-basis or block-basis, i.e. a fixed number 
of bytes (e.g., diff1 and rdiff2, respectively). If one 
base has changed, the complete line or block 
will be stored instead of only the changed bas-
es. This behavior makes these applications inef-
ficient for storing processing steps in sequence 
data analysis, and suggests that these data re-
quire a high-resolution method to efficiently save 
processed sequence data files.

This paper describes fq_delta, a python 
module to store differences between versions 
of fastq files. This module compares strings on a 
per-character basis and stores differences be-
tween them, thereby saving all changes into a 
file that is a fraction of the processed fastq file. 
Storage of the original file and delta files there-
fore enables full reconstruction of processed ver-
sions of fastq files.

Design and Implementation
Fq_delta uses the google-diff-match-patch li-
brary (Fraser, 2009), which implements Myer’s 
diff algorithm (Myers, 1986). Fq_delta applies this 
technique to fastq files. 

Consider a given sequence line in a fastq file 
containing the following string:

ACACGTAGTATACGGCATGCTACG

Assume the first 11 characters comprise a se-
quence tag that needs to be removed before 
further analysis takes place, resulting in the fol-
lowing string:

1 pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.
html

2 linux.die.net/man/1/rdiff

ACGGCATGCTACG

In the delta file, this line would be listed as:

-11 =13

This describes that the first 11 characters of the 
original line are removed and the subsequent 13 
characters remain the same. Storing this descrip-
tion uses far fewer bytes than storing the com-
plete processed line. Even when storing a large 

number of minor changes, this method is more 
efficient than the standard command line diff 
application. The processed string can be recon-
structed using the first string and the difference 
between the first and second strings, as docu-
mented in the delta file.

Generating a delta file
Fq_delta expects two fastq files as input. The 
first is assumed to be the original, the second a 
processed version: i.e., fq_delta computes the 
delta of the second input file relative to the first. 
Four lines of each file are read, covering one se-
quence read. To ensure that related original and 
processed sequences are matched, the identi-
fier lines (IDs) are first compared, excluding any 
tab-separated values. If the IDs match, the dif-
ference between each line is written to a text file, 
called the delta file. If the IDs do not match, the 
read from the original file has evidently been re-
moved from the processed file (fq_delta thereby 
assumes that the original and processed fastq 
files have the same read order). This is written into 
the delta file and the next four lines are read from 
the original file. This process is repeated until the 
end of the processed file has been reached. An 
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Table 1. Size reduction achieved by storing the processed fastq file in a zip archive, by storing an rdiff delta file in a zip ar-
chive and by using fq _ delta. File sizes expressed in Megabytes. Percentages are based on the processed fastq file size, as 
indicated in the first column. The original, unprocessed fastq file was 802.5 MB.

fastq zipped fastq zipped rdiff delta fq_delta
fastq _ masker -q 10 765.29 225.58 (29%) 212.87 (28%) 7.19 (0.94%)
fastq _ masker -q 25 765.29 228.17 (30%) 227.49 (30%) 17.53 (2.3%)
fastq _ quality _ trimmer 740.10 221.32 (30%) 197.77 (27%) 2.11 (0.28%)
cutadapt 751.53 223.05 (30%) 89.68 (12%) 0.74 (<0.1%)
cutadapt trimmed only 41.59 11.47 (28%) 11.48 (28%) 0.82 (2.0%)
cutadapt untrimmed only 709.94 211.69 (30%) 81.38 (11%) 0.39 (<0.1%)
removed lines 306.58 90.67 (30%) 0.002 (<0.1%) 0.08 (<0.1%)

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://linux.die.net/man/1/rdiff
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
http://linux.die.net/man/1/rdiff
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md5 hash of the processed file is calculated and 
written to a separate checksum file so that data 
integrity can be verified when reconstructing the 
file (fq_delta raises an error when these do not 
match). Finally, the delta file and the checksum 
file are compressed into one standard zip ar-
chive.

Retrieving a processed file
Fq_delta expects two files during retrieval: the 
original fastq file, and the zip archive containing 
the delta file that represents the processed ver-
sion. The delta file and checksum file are both 
extracted from the zip archive. If the checksum 
file is not found, the process is aborted immedi-
ately. The original file and the delta file are read 
line by line. The delta line is applied to the original 
line to reconstruct the processed line. The pro-
cessed line is either written to a new file or printed 
to standard out. When the end of the delta file is 
reached, the process is stopped, effectively ig-
noring the last lines that were in the original but 
not in the processed versions.

Technical details
Fq_delta is written in Python 2.7 as a module. It 
provides a class that implements the same func-
tions as typical file-like objects. The class is able 
to use standard in or standard out as input or out-
put, respectively. Fastqfiles that are compressed 
using quip (Jones et al., 2012) are decompressed 
on-the-fly. Fq_delta assumes an unchanged 
order of reads from one version to the other to 
generate the delta file. The Fq_delta module 
was tested in scenarios where data integrity was 
deliberately compromised. In all cases, the ap-
plication detected the error and reportedit to the 
user.

Fq_delta can also be used as a command-
line tool, using two additional shell scripts that are 
provided with the module. The python module, 
command line scripts and a test script are avail-
able at https://github.com/averaart/fq _ delta.

Results & Discussion
The application was tested using fastq _masker 
and fastq _quality _ trimmer from the FASTX-
toolkit (Gordon & Hannon, 2010), and cutadapt 
(Martin, 2011) on the first 2,500,000 reads of a 
publicly available data-set (Uddenberg et al., 

2013) for Norway spruce (Picea abies; the test 
shell script is available from the codebase). To 
demonstrate that removed lines are handled 
correctly, irrespective of their location in the file, 
an extra test was performed where we removed 
500,000 reads from the start, the middle and the 
end of the example set.

Using fq_delta, the processed files were suc-
cessfully compressed and accurately repro-
duced, using the original file as a reference. 
Table 1 illustrates the file sizes of the processed 
files and the resulting delta files, showing a re-
duction in required storage of at least 97 percent.

The sizes of fq _ delta files were compared 
with compressed versions of the processed files, 
and both uncompressed and compressed ver-
sions of diff and rdiff files. In most cases, the un-
compressed diff and rdiff files were much larger 
than the compressed fastq files; only the com-
pressed rdiff file was smaller in all cases (Table 1). 
The fq _ delta files were an order of magnitude 
smaller in all cases, except the “removed lines” 
scenario. 

The large difference between rdiff and fq_
delta can be explained by the coarse- and fine-
grained resolutions of the respective methods. 
The rdiff algorithm is too coarse to efficiently reg-
ister small changes, whereas fq_delta works on 
a per-character basis. This is illustrated by the ‘re-
moved lines’ test, where the fastq file was divided 
into five continuous sections, two of which were 
saved in the processed file. Only in this coarse-
grained scenario did rdiff perform better than 
fq_delta.

In summary, fq_delta is able to store multiple 
versions of a fastq file at a fraction of the usual 
storage costs. None of the tools we are aware of 
show the same efficiency. There are no require-
ments to the fastq files, except that the order of 
the reads should be consistent between original 
and processed versions. Especially combined 
with compression of original files, fq_delta drasti-
cally reduces the amount of storage necessary 
when processing sequence data.
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