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Abstract
This work presents the design and proof of principles of Boinq, a flexible query engine for querying and analysing se-
quence data based on bio-ontology based annotations.The Boinq framework is a web application that allows querying 
sequencing data in a user friendly way. The application includes a genome browser, and a query builder component that 
builds SPARQL queries to interrogate endpoints providing sequence annotations.It contains a visualization component for 
inspection of the data using a genome browser, and an interface for defining the analysis that needs to be done. The 
analysis will be split up in two steps: (1) Definition of a region of interest by combining a number of simple match operators, 
and (2) Definition of the analysis [still under construction]The framework also offers a number of SPARQL endpoints that act 
as sources for delivering feature information as RDF data, and a SPARQL endpoint providing metadata about the feature 
datasources. These endpoints are queried by the framework, both to fetch the features, and to compose the queries for 
filtering these feature based on the match operators.

Motivation and Objectives
This work presents the design and proof of prin-
ciples application of Boinq, a flexible query en-
gine for querying and analysing sequence data 
based on bio-ontology based annotations.

The bandwidth of sequence data generation 
has increased spectacularly since the advent 
of so-called next generation sequencing tech-
niques, now approx. eight years ago (Metzker, 
2009). This rate is still increasing today due to sin-
gle molecule techniques, which are expected 
to increase data rates even further (Blow, 2008). 
These developments have spawned develop-
ment of data processing workflows. At some 
stage, these pipelines result in a set of reads 
from the instrument, mapped to a reference ge-
nome assembly. 

In many applications (such as RNASeq or 
ChIPSeq) counting these reads in a certain re-
gion is the start of further analysis. In research 
environments, these private read data are 
combined with publicly available datasets to 
perform numerous integrative queries over dis-
persed and highly heterogeneous datasets. An 
example of such questions is to compare read 
counts between treatment A and treatment B 
in regions upstream of genes annotated with a 
certain gene ontology (GO) term. Such an anal-
ysis requires counting reads from two data sourc-
es, consulting the GO, and finding gene anno-
tations from a public database. Such analyses 
still requires hacking together a combination of 
queries, data conversions and ad hoc scripts. 

This is time consuming and error prone, and fur-
thermore requires specialised personnel.

An analysis of a set of example questions re-
vealed that there is a need for a rapid analysis 
pipeline to: 
• quickly specify and visualise regions of inter-

est based on a number of criteria. In these 
criteria, interoperability with bio-ontologies is 
required;

• perform simple aggregating or ranking anal-
yses in these regions. 
The boundary condition imposed by working 

with a collection of distributed, heterogeneous 
data is the natural ecosystem for semantic web 
technologies. This fact, and the required inter-
operability with bio-ontologies led to the deci-
sion to leverage semantic web technologies for 
disclosing, integrating and querying sequence 
data. The use of semantic web technologies of-
fers clear advantages. As sketched above, the 
technologies are ideally suited to deal with dis-
tributed, heterogeneous data sources, and a 
growing body of (molecular) biological knowl-
edge is being disclosed using well defined bio-
ontologies. 

Drawbacks can be identified as well. First, 
the inherent freedom associated with exposing 
data as RDF creates challenges. Obviously, us-
ing a common technology is not sufficient for 
guaranteeing interoperability. Therefore, a way 
to describe data sources that describe annota-
tion features needs to be agreed upon. While 
such an initiative needs discussion in a wider 
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group, some minimum requirements for such a 
standard are put forward in what follows. A sec-
ond drawback originates from the complexity for 
the layman to create queries for a liberal data 
space. For this reason, we felt the need to in-
clude a query builder into the platform, as dis-
cussed further on. 

Methods
The Boinq framework is composed of the follow-
ing components:
• an RDF store with SPARQL endpoint docu-

menting available data sources for features. 
An ontology is available for this meta dataset 
and is discussed further;

• a set of local SPARQL endpoints for exposing 
feature sets from various sources as RDF data, 
either directly or through mapping of the un-
derlying SQL data. An endpoint is available 
for querying a subset of a locally running en-
sembl core data set for homo sapiens (Flicek 
et al., 2012);

• an interface for exploring the feature data 
sources. It contains a visualisation compo-
nent for inspection of the data using a built-in 
genome browser, and an interface for defin-
ing the analysis that needs to be done. The 
analysis is split up in two steps:
° definition of a region of interest;
° definition of the analysis (still under construc-

tion).
The Boinq application is offered as a web ap-
plication, and is built on a Java software stack. 
The following technologies were used to develop 
the framework:
• the client interface is built using SmartGWT1;
• ontologies were built using Protégé2;
• the server software is composed of individual 

components orchestrated using Spring3, and 
persistence is achieved using Hibernate4;

• the RDF data and the ontologies used are 
exposed as a SPARQL endpoint using the 
Apache Jena framework5, more specifically 
the fuseki component. This framework is also 
used as a SPARQL client;

1 http://code.google.com/p/smartgwt/
2 http://protege.stanford.edu
3 http://www.springsource.org/
4 http://www.hibernate.org/
5 http://jena.apache.org/

• mapping relational data to RDF dynami-
cally is done using d2rq6 (Bizer & Seaborne, 
2004). The mapping from the ensembl core 
to FALDO7 is documented on-line;

• Apache tomcat is used as application server;
• asynchronous jobs are handled using Quartz8.
The architecture is depicted graphically in Figure 
1.

Results and Discussion
The boinq tool in its current version assumes the 
presence of data sources providing genome 
annotations (or features) through a SPARQL end-
point. We limit our application to features that are 
mapped to a publicly available reference ge-
nome and with exactly known positions on this 
reference. 

Describing RDF feature data sources
Currently, exposing features as RDF data is not 
yet common practice, yet several initiatives are 
in place for doing just this in the near future. As 
common standards are not yet in place, we 
define in this section the assumptions about a 
feature data source. We have tried to make use 
of publicly available ontologies as much as pos-
sible:
• the position of a feature on a reference as-

sembly is described using FALDO9;
• the types of features are described using the 

sequence ontology (Eilbeck et al., 2005).
All further information about feature types that 

are offered by a data source are described in 
the meta dataset, that is an RDFS/OWL repository, 
available at the boinq website. A direct SPARQL 
endpoint to this meta dataset is also available. In 
the current version, we are using a central reposi-
tory, but we solicit cooperative efforts to ensure 
that each data source adheres to a common 
ontology describing its fields and feature types.

In addition to providing sufficient information 
about the resource for human interpretation, 
the data source RDF store needs to provide as-
sistance to the region builder component (see 
further). It needs to detail the available (filterable) 
fields for each feature type, and their target data 
types. The query builder uses SPARQL to query 
the data source metadata repository.

6 http://www.d2rq.org/
7 http://github.com/mr-tijn/d2rq _ ensembl _ faldo
8 http://quartz-scheduler.org/
9 https://github.com/JervenBolleman/FALDO-paper
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The region builder
While SPARQL is relatively straightforward to use 
for a technical audience, the tool is intended for 
biologists, not computer scientists. In addition, 
querying pure RDF without a reasoner in place 
will fail to return desired results. Therefore, a query 
builder was designed to aid the user in defining 
“Match trees”, a combination of match opera-
tors that result in queries on SPARQL data sources 
for computing regions of interest.

An additional benefit of defining queries on a 
meta-level rather than directly in SPARQL is that 
generators can be built on top of the match tree 
that target other protocols for fetching remote 
features. For example, the design of the match 
tree is kept compatible with the DAS specification 
(Jenkinson et al., 2008), so a generator for DAS 
query URLs may be plugged in at a later stage. 

The region of interest that is used to perform 
the analysis, is defined by setting a number of 
criteria on known features. The region of interest 
for the analysis is then composed of a set of re-
gions bound to the set of matching features.

The criteria are built by combining Match op-
erators. The following Match operators are cur-
rently implemented:
• Match Location - these are criteria regarding 

the location of the feature;

• Match Type - to only return features of the 
specified type;

• Match All - this is an aggregate operator that 
requires all subcriteria to match;

• Match Any - this aggregate operator requires 
at least one subcriterion to match;

• Match Field - this operator restricts the features 
to those that fit within a restriction on a prop-
erty of the feature. This operator is discussed 
in further detail.

The match field operator makes extensive use of 
the data source metadata. Indeed, as RDF data 
have inherently little restrictions on data types or 
the type of statements that can be made, there 
is great freedom in the definition of SPARQL que-
ries. In order to guide the user in defining queries 
that are relevant to the data at hand, some re-
strictions are necessary. The field match operator 
first queries, for the type of feature at hand, the 
fields that are known. For this, a SPARQL query 
is used that takes advantage of rdfs:domain 
statements on properties of superclasses of the 
feature type. To avoid a too wide selection how-
ever, superclasses are restricted to avoid generic 
classes such as owl:Class. For the property field 
that is chosen from this selection by the user, the 
rdfs:range statements are inspected for the tar-
get type of the selected property.

Figure 1. Architecture of the boinq application.



54                                  oral CommuniCations EMBnet.journal 19.B

If no information is found, the user can en-
ter either an URI or a literal of a supported type 
(string and some numeric types). If range state-
ments do provide information about the target 
entity, there are two possibilities:
• the entity is further described in the data 

source metadata - in this case, the interface 
will recurs into the target entity, creating a sub-
Match on a field of the target entity, resulting 
in a chain of Matches;

• the entity is unknown - in this case, again the 
user can choose between a URI or a literal;

• the entity is a literal - in this case, the user can 
enter a restriction on the literal value.

• For literal values, the following restrictions are 
supported:

• strings will be interpreted as a regex that must 
match, and optionally be case insensitive;

• for numeric values, comparison operators 
can be constructed (=,<,>,…).

An example of a query under construction is giv-
en in Figure 2. In Figure 2, features of type “gene” 
are to be fetched form the ensembl Homo sa-
piens datasource, that have a transcript whos 
label matches “example”, and are located on 
chromosome 4, before position 200000. After 
construction of the Match tree, a SPARQL expres-
sion is generated that is used to fetch the set of 
matching features, and calculate the region of 
interest from that set. The user is presented the 
expression before use, so advanced users can 
make changes to the query, if necessary. For ex-
ample, the query generated from Fig. 2 is 

SELECT [...]
WHERE
  { ?feature 
    rdfs:label            ?featureId ;
   faldo:begin            ?featureBegin .
 ?featureBegin

    faldo:position        ?featureBeginPos.
  ?feature 
    faldo:end             ?featureEnd.
  ?featureEnd 
    faldo:position        ?featureEndPos.
  ?featureBegin 
    faldo:reference       ?featureRef.
  ?featureRef
    rdfs:label            ?featureRefName.
  ?featureBegin
    rdf:type              
?featurePositionType.
  ?feature 
    rdf:type              ensembl:gene;
    ensembl:has_transcript  ?entity1.
  ?entity1 
    rdfs:label            ?entity2 .
    FILTER (str(?featureRefName) = “4”)
    FILTER (?featureBeginPos <= 200000)
    FILTER regex(str(?entity2),
“example”, “i”)
  }
ORDER BY
ASC(?featureBeginPos)

External terms (terms from external ontologies) 
are handled in a specific way. The metadata re-
pository specifies for each external term:
• a SPARQL endpoint;
• a SPARQL graph;
• optionally a term that is the superclass of any 

terms that can be used;
• optionally additional restrictions on the terms 

from the target ontology.
The system currently refers to Bioportal (Whetzel 

et al., 2011) for external terms. Upon encountering 
an external term, the user interface will use the 
Bioportal SPARQL endpoint to find and retrieve 
the relevant terms, and present them as a tree to 
the user. The user can also use full text search to 
find terms. The user has an option to retrieve all 
subclasses to be included in the match.

Figure 2. Example of a query under construction.
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The visualization component
A built-in genome browser is available to inspect 
the computed regions visually. The browser is 
integrated in the interface and supports track 
based visualisation of generic features, and also 
shows ENSEMBL data as a background.

The analysis component
The analysis part is under development, but cur-
rently supports computing counting reads from a 
track in a predefined region of interest. Features 
to be included here are:
• ranking individual regions in a region of inter-

est based on read count comparison. While 
further analysis is needed for validating find-
ings based on these comparisons, it is al-
ready useful in focusing the effort;

• comparing read counts between tracks in a 
region of interest. For this, further research has 
to be performed into methods for comput-
ing statistical significance based on unknown 
data sources.

Availability
The tool is still under active development, but 
a prototype version is available at http://www.
boinq.org/. This version currently supports basic 
queries based on Homo sapiens assembly v. 37. 
At this URL, you will find links to:
• a brief user manual
• the actual webapp
• the SPARQL endpoint 

• the RDFS/OWL files
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