
 EMBnet.journal 19.B oral CommuniCations 51

An ontology based query engine for querying biological sequences
Martijn Devisscher1 , Tim De Meyer2, Wim Van Criekinge2, Peter Dawyndt2

1Genohm, Gent
2Ghent University, Gent

Received 5 July 2013; Accepted 10 September 2013; Published 14 October 2013

Competing interests: the authors have declared that no competing interests exist.

Abstract
This work presents the design and proof of principles of Boinq, a flexible query engine for querying and analysing se-
quence data based on bio-ontology based annotations.The Boinq framework is a web application that allows querying
sequencing data in a user friendly way. The application includes a genome browser, and a query builder component that
builds SPARQL queries to interrogate endpoints providing sequence annotations.It contains a visualization component for
inspection of the data using a genome browser, and an interface for defining the analysis that needs to be done. The
analysis will be split up in two steps: (1) Definition of a region of interest by combining a number of simple match operators,
and (2) Definition of the analysis [still under construction]The framework also offers a number of SPARQL endpoints that act
as sources for delivering feature information as RDF data, and a SPARQL endpoint providing metadata about the feature
datasources. These endpoints are queried by the framework, both to fetch the features, and to compose the queries for
filtering these feature based on the match operators.

Motivation and Objectives
This work presents the design and proof of prin-
ciples application of Boinq, a flexible query en-
gine for querying and analysing sequence data
based on bio-ontology based annotations.

The bandwidth of sequence data generation
has increased spectacularly since the advent
of so-called next generation sequencing tech-
niques, now approx. eight years ago (Metzker,
2009). This rate is still increasing today due to sin-
gle molecule techniques, which are expected
to increase data rates even further (Blow, 2008).
These developments have spawned develop-
ment of data processing workflows. At some
stage, these pipelines result in a set of reads
from the instrument, mapped to a reference ge-
nome assembly.

In many applications (such as RNASeq or
ChIPSeq) counting these reads in a certain re-
gion is the start of further analysis. In research
environments, these private read data are
combined with publicly available datasets to
perform numerous integrative queries over dis-
persed and highly heterogeneous datasets. An
example of such questions is to compare read
counts between treatment A and treatment B
in regions upstream of genes annotated with a
certain gene ontology (GO) term. Such an anal-
ysis requires counting reads from two data sourc-
es, consulting the GO, and finding gene anno-
tations from a public database. Such analyses
still requires hacking together a combination of
queries, data conversions and ad hoc scripts.

This is time consuming and error prone, and fur-
thermore requires specialised personnel.

An analysis of a set of example questions re-
vealed that there is a need for a rapid analysis
pipeline to:
• quickly specify and visualise regions of inter-

est based on a number of criteria. In these
criteria, interoperability with bio-ontologies is
required;

• perform simple aggregating or ranking anal-
yses in these regions.
The boundary condition imposed by working

with a collection of distributed, heterogeneous
data is the natural ecosystem for semantic web
technologies. This fact, and the required inter-
operability with bio-ontologies led to the deci-
sion to leverage semantic web technologies for
disclosing, integrating and querying sequence
data. The use of semantic web technologies of-
fers clear advantages. As sketched above, the
technologies are ideally suited to deal with dis-
tributed, heterogeneous data sources, and a
growing body of (molecular) biological knowl-
edge is being disclosed using well defined bio-
ontologies.

Drawbacks can be identified as well. First,
the inherent freedom associated with exposing
data as RDF creates challenges. Obviously, us-
ing a common technology is not sufficient for
guaranteeing interoperability. Therefore, a way
to describe data sources that describe annota-
tion features needs to be agreed upon. While
such an initiative needs discussion in a wider

52 oral CommuniCations EMBnet.journal 19.B

group, some minimum requirements for such a
standard are put forward in what follows. A sec-
ond drawback originates from the complexity for
the layman to create queries for a liberal data
space. For this reason, we felt the need to in-
clude a query builder into the platform, as dis-
cussed further on.

Methods
The Boinq framework is composed of the follow-
ing components:
• an RDF store with SPARQL endpoint docu-

menting available data sources for features.
An ontology is available for this meta dataset
and is discussed further;

• a set of local SPARQL endpoints for exposing
feature sets from various sources as RDF data,
either directly or through mapping of the un-
derlying SQL data. An endpoint is available
for querying a subset of a locally running en-
sembl core data set for homo sapiens (Flicek
et al., 2012);

• an interface for exploring the feature data
sources. It contains a visualisation compo-
nent for inspection of the data using a built-in
genome browser, and an interface for defin-
ing the analysis that needs to be done. The
analysis is split up in two steps:
° definition of a region of interest;
° definition of the analysis (still under construc-

tion).
The Boinq application is offered as a web ap-
plication, and is built on a Java software stack.
The following technologies were used to develop
the framework:
• the client interface is built using SmartGWT1;
• ontologies were built using Protégé2;
• the server software is composed of individual

components orchestrated using Spring3, and
persistence is achieved using Hibernate4;

• the RDF data and the ontologies used are
exposed as a SPARQL endpoint using the
Apache Jena framework5, more specifically
the fuseki component. This framework is also
used as a SPARQL client;

1 http://code.google.com/p/smartgwt/
2 http://protege.stanford.edu
3 http://www.springsource.org/
4 http://www.hibernate.org/
5 http://jena.apache.org/

• mapping relational data to RDF dynami-
cally is done using d2rq6 (Bizer & Seaborne,
2004). The mapping from the ensembl core
to FALDO7 is documented on-line;

• Apache tomcat is used as application server;
• asynchronous jobs are handled using Quartz8.
The architecture is depicted graphically in Figure
1.

Results and Discussion
The boinq tool in its current version assumes the
presence of data sources providing genome
annotations (or features) through a SPARQL end-
point. We limit our application to features that are
mapped to a publicly available reference ge-
nome and with exactly known positions on this
reference.

Describing RDF feature data sources
Currently, exposing features as RDF data is not
yet common practice, yet several initiatives are
in place for doing just this in the near future. As
common standards are not yet in place, we
define in this section the assumptions about a
feature data source. We have tried to make use
of publicly available ontologies as much as pos-
sible:
• the position of a feature on a reference as-

sembly is described using FALDO9;
• the types of features are described using the

sequence ontology (Eilbeck et al., 2005).
All further information about feature types that

are offered by a data source are described in
the meta dataset, that is an RDFS/OWL repository,
available at the boinq website. A direct SPARQL
endpoint to this meta dataset is also available. In
the current version, we are using a central reposi-
tory, but we solicit cooperative efforts to ensure
that each data source adheres to a common
ontology describing its fields and feature types.

In addition to providing sufficient information
about the resource for human interpretation,
the data source RDF store needs to provide as-
sistance to the region builder component (see
further). It needs to detail the available (filterable)
fields for each feature type, and their target data
types. The query builder uses SPARQL to query
the data source metadata repository.

6 http://www.d2rq.org/
7 http://github.com/mr-tijn/d2rq _ ensembl _ faldo
8 http://quartz-scheduler.org/
9 https://github.com/JervenBolleman/FALDO-paper

http://code.google.com/p/smartgwt/
http://protege.stanford.edu
http://www.springsource.org/
http://www.hibernate.org/
http://jena.apache.org/
http://code.google.com/p/smartgwt/
http://protege.stanford.edu
http://www.springsource.org/
http://www.hibernate.org/
http://jena.apache.org/
http://www.d2rq.org/
http://github.com/mr-tijn/d2rq_ensembl_faldo
http://github.com/mr-tijn/d2rq_ensembl_faldo
http://quartz-scheduler.org/
https://github.com/JervenBolleman/FALDO-paper
http://www.d2rq.org/
http://github.com/mr-tijn/d2rq_ensembl_faldo
http://quartz-scheduler.org/
https://github.com/JervenBolleman/FALDO-paper

 EMBnet.journal 19.B oral CommuniCations 53

The region builder
While SPARQL is relatively straightforward to use
for a technical audience, the tool is intended for
biologists, not computer scientists. In addition,
querying pure RDF without a reasoner in place
will fail to return desired results. Therefore, a query
builder was designed to aid the user in defining
“Match trees”, a combination of match opera-
tors that result in queries on SPARQL data sources
for computing regions of interest.

An additional benefit of defining queries on a
meta-level rather than directly in SPARQL is that
generators can be built on top of the match tree
that target other protocols for fetching remote
features. For example, the design of the match
tree is kept compatible with the DAS specification
(Jenkinson et al., 2008), so a generator for DAS
query URLs may be plugged in at a later stage.

The region of interest that is used to perform
the analysis, is defined by setting a number of
criteria on known features. The region of interest
for the analysis is then composed of a set of re-
gions bound to the set of matching features.

The criteria are built by combining Match op-
erators. The following Match operators are cur-
rently implemented:
• Match Location - these are criteria regarding

the location of the feature;

• Match Type - to only return features of the
specified type;

• Match All - this is an aggregate operator that
requires all subcriteria to match;

• Match Any - this aggregate operator requires
at least one subcriterion to match;

• Match Field - this operator restricts the features
to those that fit within a restriction on a prop-
erty of the feature. This operator is discussed
in further detail.

The match field operator makes extensive use of
the data source metadata. Indeed, as RDF data
have inherently little restrictions on data types or
the type of statements that can be made, there
is great freedom in the definition of SPARQL que-
ries. In order to guide the user in defining queries
that are relevant to the data at hand, some re-
strictions are necessary. The field match operator
first queries, for the type of feature at hand, the
fields that are known. For this, a SPARQL query
is used that takes advantage of rdfs:domain
statements on properties of superclasses of the
feature type. To avoid a too wide selection how-
ever, superclasses are restricted to avoid generic
classes such as owl:Class. For the property field
that is chosen from this selection by the user, the
rdfs:range statements are inspected for the tar-
get type of the selected property.

Figure 1. Architecture of the boinq application.

54 oral CommuniCations EMBnet.journal 19.B

If no information is found, the user can en-
ter either an URI or a literal of a supported type
(string and some numeric types). If range state-
ments do provide information about the target
entity, there are two possibilities:
• the entity is further described in the data

source metadata - in this case, the interface
will recurs into the target entity, creating a sub-
Match on a field of the target entity, resulting
in a chain of Matches;

• the entity is unknown - in this case, again the
user can choose between a URI or a literal;

• the entity is a literal - in this case, the user can
enter a restriction on the literal value.

• For literal values, the following restrictions are
supported:

• strings will be interpreted as a regex that must
match, and optionally be case insensitive;

• for numeric values, comparison operators
can be constructed (=,<,>,…).

An example of a query under construction is giv-
en in Figure 2. In Figure 2, features of type “gene”
are to be fetched form the ensembl Homo sa-
piens datasource, that have a transcript whos
label matches “example”, and are located on
chromosome 4, before position 200000. After
construction of the Match tree, a SPARQL expres-
sion is generated that is used to fetch the set of
matching features, and calculate the region of
interest from that set. The user is presented the
expression before use, so advanced users can
make changes to the query, if necessary. For ex-
ample, the query generated from Fig. 2 is

SELECT [...]
WHERE
 { ?feature
 rdfs:label ?featureId ;
 faldo:begin ?featureBegin .
 ?featureBegin

 faldo:position ?featureBeginPos.
 ?feature
 faldo:end ?featureEnd.
 ?featureEnd
 faldo:position ?featureEndPos.
 ?featureBegin
 faldo:reference ?featureRef.
 ?featureRef
 rdfs:label ?featureRefName.
 ?featureBegin
 rdf:type
?featurePositionType.
 ?feature
 rdf:type ensembl:gene;
 ensembl:has_transcript ?entity1.
 ?entity1
 rdfs:label ?entity2 .
 FILTER (str(?featureRefName) = “4”)
 FILTER (?featureBeginPos <= 200000)
 FILTER regex(str(?entity2),
“example”, “i”)
 }
ORDER BY
ASC(?featureBeginPos)

External terms (terms from external ontologies)
are handled in a specific way. The metadata re-
pository specifies for each external term:
• a SPARQL endpoint;
• a SPARQL graph;
• optionally a term that is the superclass of any

terms that can be used;
• optionally additional restrictions on the terms

from the target ontology.
The system currently refers to Bioportal (Whetzel

et al., 2011) for external terms. Upon encountering
an external term, the user interface will use the
Bioportal SPARQL endpoint to find and retrieve
the relevant terms, and present them as a tree to
the user. The user can also use full text search to
find terms. The user has an option to retrieve all
subclasses to be included in the match.

Figure 2. Example of a query under construction.

 EMBnet.journal 19.B oral CommuniCations 55

The visualization component
A built-in genome browser is available to inspect
the computed regions visually. The browser is
integrated in the interface and supports track
based visualisation of generic features, and also
shows ENSEMBL data as a background.

The analysis component
The analysis part is under development, but cur-
rently supports computing counting reads from a
track in a predefined region of interest. Features
to be included here are:
• ranking individual regions in a region of inter-

est based on read count comparison. While
further analysis is needed for validating find-
ings based on these comparisons, it is al-
ready useful in focusing the effort;

• comparing read counts between tracks in a
region of interest. For this, further research has
to be performed into methods for comput-
ing statistical significance based on unknown
data sources.

Availability
The tool is still under active development, but
a prototype version is available at http://www.
boinq.org/. This version currently supports basic
queries based on Homo sapiens assembly v. 37.
At this URL, you will find links to:
• a brief user manual
• the actual webapp
• the SPARQL endpoint

• the RDFS/OWL files

Acknowledgements
The work was made possible by a Baekeland
scholarship from the Agency for Innovation by
Science and Technology in Flanders (IWT). The
first author furthermore wish to thank all Genohm
colleagues, and in particular David De Beule
and Ruben Simoens for their expertise and kind
assistance with programming in SmartGWT and
Spring.

References
Bizer C and Seaborne A. (2004) D2RQ-treating non-RDF

databases as virtual RDF graphs. Proceedings of the
3rd International Semantic Web Conference, Hiroshima,
Japan, November 7-11, 2004.

Blow N (2008) DNA sequencing: generation next-next. Nature
Methods 5, 267-274. doi:10.1038/nmeth0308-267

Eilbeck K, Lewis SE, et al. (2005) The Sequence Ontology: a
tool for the unification of genome annotations. Genome
Biology 6(5). doi:10.1186/gb-2005-6-5-r44

Flicek P, Ahmed I, et al. (2012) Ensembl 2013. Nucleic Acids
Research 41(D1), D48–D55. doi:10.1093/nar/gks1236

Jenkinson AM, Albrecht M, et al. (2008) Integrating bio-
logical data - the Distributed Annotation System. BMC
Bioinformatics 9(Suppl 8), S3. doi:10.1186/1471-2105-9-S8-
S3

Metzker ML (2009) Sequencing technologies - the next gen-
eration. Nature Reviews Genetics 11(1), 31–46. doi:10.1038/
nrg2626

Whetzel PL, Noy NF, et al. (2011) BioPortal: enhanced func-
tionality via new Web services from the National Center
for Biomedical Ontology to access and use ontologies in
software applications. Nucleic Acids Res. 39(Web Server
issue), W541-545. doi:10.1093/nar/gkr469.

http://www.boinq.org/
http://www.boinq.org/
http://dx.doi.org/10.1038/nmeth0308-267
http://dx.doi.org/10.1186/gb-2005-6-5-r44
http://dx.doi.org/10.1093/nar/gks1236
http://dx.doi.org/10.1186/1471-2105-9-S8-S3
http://dx.doi.org/10.1186/1471-2105-9-S8-S3
http://dx.doi.org/10.1038/nrg2626
http://dx.doi.org/10.1038/nrg2626
http://dx.doi.org/10.1093/nar/gkr469

	19.B

