
 EMBnet.journal 20 Technical noTes e753

page 1 of 4
(not for indexing)

Inroduction
The development of high-throughput DNA se-
quencing techniques has led to an exponen-
tial increase in the volume of data available for
analysis. This has opened new frontiers in medi-
cal and biological studies, and boosted inter-
est in the genome research arena. However, in
many cases, the analysis of large volumes of
data can only be performed by computation-
ally intensive and complex methods that include
computer processing and statistical analysis of
sequences. Developing statistical and program-
ming skills is a major challenge, and frequently a
discouraging factor for students and researchers
in the biomedical area.

Ruby is a dynamic interpreted, open source,
object-oriented programming language with a
focus on productivity (Flanagan and Matsumoto,
2008); it is characterised by an elegant syntax and
simplicity, it is natural to read and easy to learn
(Aerts, 2009). The wide range of built-in methods
for string manipulation, reflection and meta-
programming capabilities make this language

especially suitable for bioinformatics, where the
size and complexity of codes can hinder read-
ability (Aerts, 2009). There are several Ruby im-
plementations available, such as JRuby (which
runs on the Java Virtual Machine), Rubinius (an
alternative implementation written in Ruby and
C) and the standard reference C implementa-
tion, which is now on stable version 1.9. Because
of these characteristics, Ruby is an increasingly
popular programming language, and has been
among the most popular interpreted languages
(http://www.tiobe.com/index.php/content/paper-
info/tpci/index.html). One factor that may hinder
the dissemination of Ruby, especially among
academic and technological communities, is
the fact that it does not contain built-in meth-
ods for statistical analysis and graph creation. In
the past few years, Ruby libraries (gems) for sta-
tistical analysis have been created (i.e., RSRuby,
RinRuby and Statsample). Statsample1 has a
limited number of statistical methods, while
RSRuby (Gutteridge, 2008) and RinRuby (Dahl

1 ruby-statsample.rubyforge.org/

Large-scale statistical analysis of genome data with Ruby and R: skipping
interface libraries

Sergio R. P. Line , Ana P. de Souza, Luciana S. Mofatto
Department of Morphology, Piracicaba Dental School, Piracicaba, SP, Brazil

Received 30 January 2014; Accepted 29 April 2014; Published 26 May 2014

Line SRP et al. (2014) EMBnet.journal 20, e753. http://dx.doi.org/10.14806/ej.20.0.753

Competing Interests: none

Abstract
Ruby is a dynamic interpreted, open source, object-oriented programming language with an elegant syntax and a focus
on simplicity and productivity. One factor that may hinder the dissemination of Ruby, among academic and technologi-
cal communities, is that it does not contain built-in methods for statistical analysis and graph creation. Statistical analysis
with numerical data generated by Ruby scripts is traditionally performed by storing data to a file, which is read into another
software environment for statistical analysis, using a package such as R. In order to circumvent this limitation, libraries
have been created to perform statistical analysis with Ruby. These have not gained popularity, possibly owing to its limited
statistical methods and relative complex usage. In this paper, we describe a simple and dynamic procedure to connect
Ruby and R scripts. We show that this approach can be used for large-scale genome-data processing and statistical
analysis. Its usage is simpler than interface libraries, as it does not require the creation of methods or routines other than
those already existing in R and Ruby.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://ruby-statsample.rubyforge.org/
http://ruby-statsample.rubyforge.org/
http://dx.doi.org/10.14806/ej.20.0.753

e753 Technical noTes EMBnet.journal 20

page 2 of 4
(not for indexing)

and Crawford, 2009) integrate Ruby with R. R is a
scripting language and environment developed
for statistical computing, with outstanding ca-
pacities for graphics generation (R Development
Core Team, 2013). It has an extensive library of
routines, with hundreds of contributors, it has
been heavily used and is widely accepted by
the scientific community.

 The fact that RSRuby is a C extension for Ruby
makes it much faster than RinRuby, which is 100%
Ruby implemented. RSRuby, however, has some
disadvantages, as: i) it is not available for alter-
native implementations of Ruby (e.g., JRuby); ii)
it is dependent on operating system, Ruby im-
plementation and R version; and iii) download-
ing may not be trivial for people with no formal
training in informatics. The main drawback of
RSRuby is that it does not have the full capacity
of R (i.e., p values for correlation analysis cannot
be directly obtained), and the transformations
between R and Ruby are not trivial, as in many
cases the methods for statistical tests have quite
different syntaxes (Table 1).

RinRuby and R methods have the same syn-
tax, and all the parameters from statistical analy-
sis can be transformed in Ruby objects. In fact,
RinRuby seems to be the less complicated bridge
between R and Ruby. RinRuby, however, requires
the assignment of variables to connect Ruby to
R, a procedure that has to be repeated many
times in complex codes. Limited by the factors
listed above, the libraries for statistical analysis
with Ruby have not gained much popularity, and
it seems that the most common procedure to
perform statistics from data generated by Ruby
scripts is the storage of data in files, and later
access of files through the R (or other statistical
packages) console or command line (Chang,
2012). This approach, however, is time consum-
ing and may not be feasible in high-throughput
analysis of data, where hundreds or thousands of
statistical tests have to be performed on a given
data-set.

Ruby has the capability to execute an R script
from within a Ruby script. This can be achieved
using the Ruby system method (system(“data”))

to run an R code using the batch mode (R CMD
BATCH script.R). Perhaps the easiest procedure
would be to create a file (.csv or .txt) with the
numeric data generated by a Ruby code, and
subsequently to run an R script using batch pro-
cessing (system(“R CMD BATCH script.R”)). In this
approach, two separate scripts are created. The
first is a Ruby script that generates and stores
data in a file, where numeric values for each
group or treatment are stored in distinct columns.
Execution is then transferred to an R script that
contains the commands for the statistical analy-
sis. In our view, this is the simplest way to link Ruby
and R. One possible drawback for this approach
is the creation of the file to be accessed by the
R script, which can delay the execution of the
script, especially in files generated from very
large data-sets.

In this report, we demonstrate the use of the
Ruby method for statistical analysis of large-scale
human coding sequences with R, and compare
its time performance with RinRuby.

Methods and Scripts
Procedures
The scripts were run on Ruby version 1.9.32, R ver-
sion 2.14.23 and Linux operating system Ubuntu
version 12.044. The performances of the Ruby
system and RinRuby were compared analys-
ing 29,064 human coding sequences from the
The Consensus CDS (CCDS) project5. Sequences
were stored in a single file (CCDSfinal.txt) in FastA
format. The sequences were analysed as follows:
1. the CCDSfinal.txt file was opened, and each

coding sequence was sequentially read;
2. the size, number of bases (A, C, G, T) and

CpGs (cytosine followed by guanine) of the
coding sequences were printed to a .csv file
(Ruby system approach) or stored in arrays
(RinRuby) (Supplementary file 16);

2 www.ruby-lang.org/en/downloads
3 www.r-project.org
4 www.ubuntu.com/download
5 www.ncbi.nlm.nih.gov/projects/CCDS
6 journal.embnet.org/index.php/embnetjournal/article/

downloadSuppFile/753/969

Statistical test R RSRuby

t-test t.test(a,b) r.t _ test(a,b)

Correlation test cor(a,b, method = “spearman”) r.cor(a,b, :method => “spearman”)

Table 1. Examples of R and RSRuby syntaxes for statistical tests.

http://www.ruby-lang.org/en/downloads/
http://www.r-project.org/
http://www.r-project.org/
http://www.ubuntu.com/download
http://www.ubuntu.com/download
http://www.ncbi.nlm.nih.gov/projects/CCDS
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/753/969
http://www.ruby-lang.org/en/downloads
http://www.r-project.org/
http://www.ubuntu.com/download
http://www.ncbi.nlm.nih.gov/projects/CCDS
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/753/969
http://journal.embnet.org/index.php/embnetjournal/article/downloadSuppFile/753/969

 EMBnet.journal 20 Technical noTes e753

page 3 of 4
(not for indexing)

3. the data from the .csv files and arrays were
used to plot frequency charts of bases (A, C,
G and T) versus the frequency of CpGs. The
Spearman rank correlation coefficients be-
tween coding sequence size and number of
CpGs, and the respective p-values, were also
calculated.

The time required to accomplish these proce-
dures was obtained by the mean of five program
runs, and was measured using the Ruby bench-
marking method. The scripts are reported below.

Ruby system approach

Results and Discussion
Figure 1 shows a graph of the frequency of each
base (number of specific bases in a coding se-
quence/size of coding sequence) versus the fre-
quency of CpG (number of CpGs in a coding
sequence/size of respective coding sequence).
CpG dinucleotides may be enzymatically meth-
ylated, and this chemical modification can
modulate gene expression (Robertson, 2005). As
can be seen, the relationship between CpG and
base frequency is not linear.

The processing and statistical analysis of CCDS
project coding sequences was completed in an
average of 32.32 s with the Ruby system against
37.48 s with RinRuby (t-test p = 1.3e-07). The Ruby
approach was also faster when we doubled the
genes, or when only half of the genes were ana-
lysed (Figure 2). The scripts using the Ruby system
approach had 795 characters altogether (Ruby
and R scripts) against 1722 characters of RinRuby,
which requires the assignment of variables to
connect Ruby to R.

The Ruby system approach also works in
Windows, where it requires the path to the R di-
rectory installation before the R CMD BATCH
(i.e., system(“path R CMD BATCH script.R”)) and
in Mac OS X system in a way similar to that de-
scribed here for the Linux operating system. This
approach can probably be performed with any

Ruby script

File.open(“results.csv”,”w”)
def countCpG(seq)
 count = 0; cpg = 0
 while count < seq.size - 1
 cpg += 1 if (seq[count] +
seq[count +1]) == “CG”
 count += 1
 end; cpg
end

File.open(“CCDSfinal.txt”,”r”).each do
|line|
 unless line[0] == “>”
 File.open(“results.
csv”,”a”) do |f|
 f.print line.chomp.
size,”,”,line.count(“A”),”,”,line.
count(“C”),”,”,line.count(“G”),”,”,line.
count(“T”),”,”,countCpG(line),”\n”
 end
 end
end
system(“R CMD BATCH statistics.R”)

R script

file =read.csv(“results.csv”)
 par(mfrow = c(2,2))
 par(mar= c(4.5,5,4,4))
 bases = c(“A”,”C”,”G”,”T”)
for(i in 2:5){
 plot(file[,i]/
file[,1],(file[,6]/file[,1]),xlab =
paste(“frequency”,bases[i -1]), ylab =
“frequency CpG”, col = “red”,cex.lab = 2)
 lines(loess.smooth(file[,i]/
file[,1],file[,6]/file[,1], span= 3/5,
family=”gaussian”), lwd = 2)}
corr = cor.test(file[,6],file[,1],method
= “spearman”)
print(paste(corr$estimate,corr$p.value))

Figure 1. Plot of the frequency of each base (number of spe-
cific bases in a coding sequence/size of coding sequence)
versus the frequency of CpGs (number of CpGs in a cod-
ing sequence/size of its coding sequence). The fitting line
was obtained with the LOESS (locally weighted scatterplot
smoothing) function of R.

e753 Technical noTes EMBnet.journal 20

page 4 of 4
(not for indexing)

other computer language that has the capa-
bilities to execute R scripts from within its native
script.

Our analyses show that the Ruby system can
be used for large-scale processing and statisti-
cal analysis of DNA sequencing data. In our view,
this approach has three main advantages over
other procedures: i) it avoids the installation of in-
terface libraries; ii) it is simpler to use, as it does
not require the creation of methods or routines,

other than those already existent in R and Ruby;
iii) the codes are shorter and more readable, as
it does not require the assignment of variables to
connect Ruby to R. We hope that the simplicity of
the approach presented in this paper will incen-
tive the use of Ruby in bioinformatics, as well as
in other academic and technology fields, espe-
cially by professionals and students with no for-
mal training in informatics.

Acknowledgements
LSM was supported by Fundacao de Amparo a
Pesquisa do Estado de Sao Paulo-FAPESP.

References
Aerts J, Law A (2009) An introduction to scripting in Ruby

for biologists. BMC Bioinformatics 10, 221. http://dx.doi.
org/10.1186/1471-2105-10-221

Chang SS (2012) Exploring everyday things with R and Ruby.
O´Reilly Media. Sebastopol.

Dahl DB, Crawford S (2009) RinRuby: Accessing the R inter-
preter from pure Ruby. J. Statist. Software, 29(4), 1-18.

Flanagan D, Matsumoto Y (2008) The Ruby Programming
Language. O´Reilly Media, Sebastopol.

Gutteridge A (2008) RSRuby: A bridge between Ruby and
the R interpreted language. Ruby package version 0.5.1.
http://rubyforge.org/projects/rsruby (accessed 7 January
2014).

R Development Core Team (2013) The R project for statisti-
cal computing. R Foundation for Statistical Computing,
Vienna, Austria. http://www.r-project.org/ (accessed 6
January 2014).

Robertson K (2005) DNA methylation and human disease.
Nat Rev Genet 6, 597-610. http://dx.doi.org/10.1038/
nrg1655

Figure 2. Time performance of the Ruby system and RinRuby
approaches. Note that the Ruby system approach is faster
than RinRuby, and that the time difference increases as the
number of coding sequences increases. Number of CDS =
number of coding sequences.

http://dx.doi.org/10.1186/1471-2105-10-221
http://dx.doi.org/10.1186/1471-2105-10-221
http://rubyforge.org/projects/rsruby
http://www.r-project.org/
http://dx.doi.org/10.1038/nrg1655
http://dx.doi.org/10.1038/nrg1655

