NGS: a look into the future COST Conference BRATISLAVA 2015

Meta²genomics

CNB/CSIC

Summary

- The need for meta-metagenomics
- The micro-bee
- Accuracy of metagenomics
- When is enough enough?
- Speeding up the process
- Comparing studies

Preamble

• Due to time constrains this is only an overview

• All the major points have been addressed

• Only some illustrative data will be provided

 A full description of all this work is being submitted for publication

The need for meta-metagenomics

Common trends

 There is a need to identify common trends across metagenomic studies

- Economy

- Do not repeat studies
- Practical
 - Full reproducibility is rarely achievable (if ever)

Example: Maize rhizosphere

- We conducted studies at different locations, over different yearly cultivation cycles.
- Each study considered different conditions
 - Different times
 - Different location
 - Different maize cultivars
 - Different treatments

Goal: identify cumulative effect of herbicides.

- Each study led naturally to the next analysis

A bit of history

- Started with cultivable bacteria
- Moved to metagenomics using 16S-V6 (short read lengths)
- Test normal maize
- Test cotton
- Test herbicide resistant maize
- Test and compare additional herbicides
- Test herbicide combinations...
- Each step must build on previous experience

Scientific limitations

- One can not justify a new experiment before finishing the previous ones
- But then it must be done next year (with different climate)
- If cumulative effects are expected, then it must also be done on a new, virgin soil

 As years and locations change, so do environmental conditions

The trivial approach

- A possible solution
 - Repeat the experiment (e.g. include previous treatments) in all subsequent instances
 - Replicate the experiment on different soils at the same time
 - Replicate the experiment at different times
- Problems
 - Must use the same technology
 - Must repeat work already done
 - Must waste a lot of money

The not-so-trivial approach

- Try to reuse as much information as possible
 - Some experiments will need to be repeated in all cases (e.g. control)
 - Consider the possible impact of experimental conditions
 - Time
 - Location
 - Methods
 - Treatment
 - Etc...
 - Analyze heterogeneous data

The micro-bee

Bees

- Produce honey
- Pollinate plants

"Bienenwabe mit Eiern und Brut 5" by Waugsberg (talk · contribs) - Self-photographed. Licensed under CC BY-SA 3.0 via Wikimedia Commons

- 60-80% of the world flowering plants and 35% of crop production depend on animal pollination
- Are terribly sensitive to pollution
 - Air pollution
 - Light pollution
 - Cell-phone radiation
 - Pesticide misuse
 - Global warming

"Bee covered in pollen" by Ragesoss - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons

The micro-bee

- Framework:
 - CBRN P35 EU-Africa cooperation project.
- Goal:
 - find an easy way to identify soil/water contamination
- Question:
 - is there a microbe species (or higher taxa) that can identify contamination?
- Premises:
 - Previous meta-genomic studies show that some phylogenetic groups tend to be consistently affected

The trivial approach

- Conduct experiments on as many locations as possible
- Repeat several years (to correct for climate changes)
- Test as many contaminants as possible

Impoverish your funding agency

The not-so-trivial approach

- Collect as many previous studies as possible
- Compare them
- Identify a species -or taxonomic group- that is consistently affected by aggressive treatments
- Develop a simple test for changes in the microbee population.

Data sources

- Heterogeneous data from different experiments and authors
 - Pesticide treatments
 - Grassland soils
 - Maize cultures
 - Cotton cultures
 - Etc...
- Retrieved from SRA
- Original analyses must be replicated
 - At least to the extent required by our goal

Measuring accuracy

The problem

- Taxonomy assignment is based on similarity
 - Different species differ in $\sim 3\%$
 - 97% similarity \rightarrow same species
- Knowledge limits
 - Not all bacterial sequences are known
- Practical limits
 - Some species are known to be indistinguishable by some methods
- how many species can we identify?

Measuring accuracy

- Cluster all sequences known at 97% similarity
 - Clusters gives the maximum number of groups that can be unequivocally identified
 - Singleton clusters give the maximum number of species that can be identified
- Must be checked for each method
 - Reference sequence
 - Clustering/identification method (blast, uclust, RDP, Rtax, etc...)
 - Etc...

Similarity classification

 VAMPS 16S rRNA hyper-variable regions 97% (subset)

Region	N seqs	Avg. Len.	Clusters
V3	118982	76	34951
V3V5	203487	362	34700
SSU	401607	900	24276

NOTES: SSU includes non-hyper-variable regions More sequences or more length do not imply greater power

What if I do not use similarity? Blast 97% LCA RDP RTax

Do with lessso they'll have enough!

RATIONING GIVES YOU YOUR FAIR SHARE

When is enough enough?

Identifying genetic biodiversity

- Saturating OTUS requires ~400.000 reads
- Saturating CHAO1/ACE requires ~40.000
- We need to know the shape of the distribution

Adjusting curves

- Most current methods use a standard curve (e.g. lognormal log mean=1, log sd=1)
- Does this reflect reality?

Dataset	Log mean	Log SD
FMG1 (Nacke et al.)	1.08	1.15
UPG1	1.34	0.78
UPG3	0.94	1.18
PriestPot (Quince et al.)	0.93	1.39
r143_s2 (Huse et al.)	1.411	1.94
Zaragoza Avg (Valverde et al)	1.77	1.71
ZC1	1.30	1.31
ZC2	1.85	1.61
ZG1	2.14	1.36

Speeding up

Test and compare alternatives

- Taxonomical classification
 - BLAT / BOWTIE
 - Similarity algorithms
 - RDP
 - Rtax
- Select appropriate sample size
 - Compare with saturated studies
 - Illumina
 - Consider curve fitting: rely on preliminary studies
 - Allow for experimental error

Comparing experiments

The problem

- Taxonomical comparisons are hard
 - Huge amounts of categorical data
 - Many non-shared groups
 - Various hierarchical levels
- We need a systematic approach to compare taxonomic hierarchies
 - How similar are two populations?
 - Are cladistic differences significant?

TaxFrac

- A novel approach to taxonomic comparison using full-knowledge
 - Consider all cladistic levels
 - Define a comparison metric
 - Define a statistical validation method
- Answer the question
 - "how similar are two populations?"

Item-level validation

- Two basic questions:
 - How similar are two populations?
 - Are differences significant?
- Road blocks:
 - How variable are specific sub-populations?
 - Dealing with undetectable sub-populations?
- Approaches
 - Subsampling (good for a single experiment)
 - Compare many studies (required for crossexperimental comparison)
 - Ignore method-specific discrepancies

So, what?

• The more data we collect the better

Metagenomics is still young

 Probably any conclusion we make now will need to be reviewed in the future

• But we can start to consider it right now.

Thanks NGS: a look into the future o all of you **COST** Conference the organizers 0 **BRATISLAVA 2015** To our sponsors EU COST: SEQAHEAD CYTED: FreeBIT EU CBRN: P35 **CSIC**, Spanish Government

jrvalverde@cnb.csic.es