
Introduction
Since 1956, but mainly in the last decades, storage space 
needs have grown spectacularly. The problem is that, 
as time flows, the storage funding issue has increased 
more than sequencing. That is a big problem that the 
modern scientist has to face. Sequencing has become 
more troubling because this issue makes the whole 
procedure difficult. The motivation for sequencing and 
producing new data has started to fall away (De Silva and 
Ganegoda, 2016).

Such data comes in the form of short sequencing 
reads, i.e. short character strings (typically having 
lengths in the range 75-150). Each character represents 
a nucleotide (which is also called a “base”), and can 
assume the values of A (adenine), C (cytosine), G 
(guanine), T (thymine), or N (failure in the base calling 
process) (Langmead, 2010). The nucleotide string is 
usually accompanied by a corresponding string of ASCII 
characters, encoding the “quality” (that is, the error 
probability of the base calling) of each of the nucleotides. 
This is a representative case of how a typical sequencing 
setup works when a resequencing problem is considered. 
In such a case, a reference (possibly not 100% accurate) 
for the genome/transcriptome of the organism being 
sequenced is already known. One has to map the DNA/ 

RNA sequence reads to the reference (i.e., understand 
where such reads come from in the reference) and 
find variants present in the genetic code of the specific 
organisms compared to the reference (Xu et al., 2014).

Depending on the biological application at hand, 
one might need to perform several tasks on the data, 
possibly in several steps, with both per-read and global 
computations required (Libbrecht and Noble, 2015). A 
typical workflow corresponding to the above use case 
might be as follows:
•	 store the reads in compressed searchable form 

(necessary to avoid excessive storage consumption);
•	 retrieve (a subset of ) the reads based on some 

criterion, possibly depending on the experiment 
metadata (for instance, select all the sequencing 
reads derived from a given tissue subject to a specific 
biological condition);

•	 select/process the reads, for example: identify all 
the reads containing long stretches of low-quality 
nucleotides, and trim/eliminate them;

•	 pattern/match the surviving data, read by read, onto 
a reference genome;

•	 store the reads and their alignments to the reference 
genome (that is, the matches found in the genome 
for each read) in compressed searchable form again.

In the meantime, the Cern data centre has upgraded 
storage capacity on 200 petabytes, breaking the previous 
record of 100 petabytes. Information produced every day 
is one petabyte per second. This leads to lack of space 
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Abstract

During the last decades, there is a vast data explosion in bioinformatics. Big data centres are trying to face this 
data crisis, reaching high storage capacity levels. Although several scientific giants examine how to handle the 
enormous pile of information in their cupboards, the problem remains unsolved. On a daily basis, there is a 
massive quantity of permanent loss of extensive information due to infrastructure and storage space problems. The 
motivation for sequencing has fallen behind. Sometimes, the time that is spent to solve storage space problems is 
longer than the one dedicated to collect and analyse data. To bring sequencing to the foreground, scientists have 
to slide over such obstacles and find alternative ways to approach the issue of data volume. Scientific community 
experiences the data crisis era, where, out of the box solutions may ease the typical research workflow, until 
technological development meets the needs of Bioinformatics.
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capacity within 3 minutes. Then all this information 
has to be filtered for any findings which are stored for 
later use, after three minutes everything is deleted and 
three minutes is a very short period to trace back all this 
information (Britton and Lloyd, 2014).

All this data that need to be retrieved and handled 
is being held up in I/O traffic because of slow processing 
power (Fan et al., 2014). Even if process power isn't 
still satisfying for such needs, there are other ways to 
slide over this obstacle. Technology and science go on 
hand by hand, and someone has to think out of the 
box to solve any occurring problem, without being 
stuck conventionally. The other suggested path is the 
information packings. By limiting, not only the data 
space needed for the information that we already have 
but also the new information we get, we can go further 
in a less chaotic and more organised environment by 
throwing away unnecessary information (repeats) (Fan 
et al., 2014).

The important thing is to compress information 
without losing data that is needed. One should keep in 
mind that not only huge amounts of data will need to 
be processed each day, but also that some operations 
might need to be performed incrementally. For instance, 
the data produced at some point might be used to refine 
the results obtained from some other data generated 
previously, implying the reprocessing of a possibly 
much bigger dataset. For these reasons the development 
of a robust and extensible high-throughput storage/ 
matching/processing system is necessary. Many other 
workflows might be envisaged, but most of them share 
the same skeleton structure, that is storage, retrieval, 
filtering/processing, and final storage of the results.

Clustering information based on a representative 
model (in some permissible limits) is an interesting 
way to approach the problem (Slonim et al., 2005). 
For instance, when information is recorded in output, 
the ones that don't differ from our first recorded ones 
should not be referred. The differences are the essential 
information for our search.

To some extent, sequencing data are intrinsically 
noisy (they depend on chemical reactions which are 
stochastic in nature) (Alvarez et al., 2015). On the one 
other hand, high-throughput sequencing techniques 
have now reached a high degree of reliability, so 
sequencing errors are relatively rare (Pareek et al., 
2011). Also, as mentioned above, sequencing machines 
provide a quantification of the sequencing error at each 
nucleotide regarding “qualities”, which can be used to 
pinpoint problematic nucleotides/regions in the read.

Storage state of the art
Since several years, under the pressure of increasing 
volumes of data and due to reduced hardware costs, 
the view of databases as centralised data access points 
has become vaguer (Sreenivasaiah and Kim, 2010). 
Fundamental paradigms of data organisation and storage 
have been revised to accommodate parallelisation, 

disreputability and efficiency. The storage mechanics, the 
querying methods and the analysis and aggregation of 
the results follow new models and practices. Search has 
gone beyond the boolean match, being directly linked 
to efficient indexes allowing approximate matching in 
domains ranging from string to graph matching (Pienta 
et al., 2016). The main points of this progress can be 
summarised as follows.

From row-oriented representation, nowadays the 
trend is to move to column-oriented representation 
and database systems (Abadi et al., 2009), which are the 
evolution of what was called “large statistical databases” 
in earlier literature (Corwin et al., 2007; Turner et al., 
1979). Column-oriented database systems allow high 
compressibility per column (Abadi et al., 2008), by direct 
application of existing ratio-optimised compression 
algorithms (Abadi et al., 2006). Furthermore, several 
threads are pulling current database practices away from 
the relational paradigm. Large-scale storage and access 
may include dynamic control over data layout. Peer-
topeer (P2P) overlays are also used in distributed stores, 
exchanging, e.g., index information to contributing nodes 
in distributed data warehouses (Doka et al., 2011), where 
even the queries can be executed in a peerbased fashion 
spreading the processing load. Another alternative, 
related to large-scale analysis is the case of Pig Latin 
(Gates et al., 2009), where a SQL-like syntax is used to 
provide the data flow requirements for analysis over a 
map-reduce infrastructure. Other efforts offer partial 
SQL support, as is the case of Hive (Ashish et al., 2010) 
and the corresponding query language, named HiveQL.

Recently, parallel databases (e.g., Oracle Exadata, 
Teradata) allowed high efficiency at the expense of 
failure recovery and elasticity (Pavlo et al., 2009). Newer 
approaches and versions of these parallel databases 
integrate a map-reduce approach into the systems to 
alleviate these drawbacks, see (Abouzeid et al., 2009) for 
more information.

The increased availability of low-cost, legacy 
computers has brought cloud computing settings to 
the front line. Shared-nothing architectures, implying 
selfsufficient storage or computation nodes, are applied 
to storage settings (O'Driscoll et al., 2013). There exist 
also alternative clouds based on active data storage 
(Delmerico et al., 2009; Fan et al., 2014) where part of the 
computational database effort is distributed among the 
processing units of storage peripherals. Such an example 
is the case of DataLab (Moretti et al., 2010) where data 
operations, both read and write, are based on “sets” - 
essentially named collections of files - distributed across 
several active storage units (ASUs).

Finally, task-focused storage solutions are devised 
to face problems in bioinformatics (Hsi-Yang Fritz 
et al., 2011), social networks (Ruflin et al., 2011) and 
networkmonitoring and forensics (Giura and Memon, 
2010), showing how much data requirements drive 
the need for research on storage systems. Especially in 
bioinformatics, there exist approaches that combine 
compressed storage and indexing under a common 
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approach, based on sequence properties and works on 
indexed string storage (Arroyuelo and Navarro, 2011; 
Ferragina and Manzini, 2005). There are cases where the 
system provides tunable parameters that allow a balance 
between data reuse and space recovery (Hsi-Yang Fritz 
et al., 2011), by keeping only the data that may be reused 
shortly. At this point it must be stressed that there 
still exist relational databases that are used for high-
throughput data storage, an example being the NCBI 
GEO archive (Barrett et al., 2009) which supports the 
submission of experimental outputs and provides a set 
of tools to retrieve, explore and visualise data. However, 
even in the case of NCBI GEO, the relational nature 
of the underlying database is used to identify specific 
datasets and not specific sequences (i.e., instances). 
Further analysis tools are used to locate sequences and 
aggregate information from them. In time series and 
sensor networks, storage can be a severe problem. In the 
literature, there are methods such as Sparse Indexing 
(Lillibridge et al., 2009), where sampling and backup 
streams are used to create indexes that avoid disk 
bottlenecks and storage limitations.

Beyond the full-text indexing - combined with 
compressed storage, as explained above - often met in 
bioinformatics, there are several works on time series 
indexing and graph indexing. These two types of indexes, 
together with the string (and, thus, sequence) indexes, 
provide full artillery of methods that can cope with a 
great variety of problems and settings. Graph indexing 
is under massive research, due to its applicability on 
such cases as chemical compounds, protein interactions, 
XML documents, and multimedia.

Graph indexes are often based on frequent 
subgraphs (Yan et al., 2005), or otherwise “semantically” 
interesting (Jiang et al., 2007). There exist hierarchical 
graph index methods (Abello and Kotidis, 2003), and 
hash-based ones. A related recent work (Schafer et al., 
2017) relies on “fingerprints” of graphs - derived from 
hashing on cycles and trees within a graph - for efficient 
indexing. The method is part of an open source software, 
named “Scaffold Hunter”, for visual analysis of chemical 
compound databases.

In the case of time series, to efficiently process 
and analyse large volumes of data, one must consider 
operating on summaries (or approximations) of these 
data series. Several techniques have been proposed in 
the literature (Anguera et al., 2016), including Discrete 
Fourier Transform (DFT), Discrete Cosine Transform 
(DCT), Piecewise Aggregate Approximation (PAA) , 
Discrete Wavelet Transform (DWT) , Adaptive Piecewise 
Constant Approximation (APCA) , Approximation 
(SAX), and others. Recent works (Emil Gydesen et 
al., 2015) based on the iSAX (Shieh and Keogh, 2009) 
algorithm have focused on the batch update process of 
indexing very large collections of time series and have 
proposed highly efficiency algorithms with optimised 
disk I/O, managing to index “one billion time series” 
very efficiently on a single machine. Another system, 
Cypress (Reeves et al., 2009), applies multi-scale 

analysis to decompose time series and to obtain sparse 
representations in various domains, allowing reduced 
storage requirements. Furthermore, this method can 
answer many statistical queries without the need to 
reconstruct the original data.

Conclusions
The life sciences are becoming a “big data business”. 
Modern science needs have changed, and lack of storage 
space has become of great interest among the scientific 
community. There is an urgent need for computational 
ability and storage capacity development. In a short 
period, several scientists are finding themselves unable 
to extract full value from the large amounts of data 
becoming available. The revolution that happened 
in next-generation sequencing, bioinformatics and 
biotechnology are unprecedented. Sequencing has to 
come first in priority but, because of technical problems 
during this process, the time spent to solve space 
problems is longer than the one dedicated to the part 
of collecting and analysing data. During this problem, a 
huge amount of data produced every day is being lost. 
As we understand, the scientist must overcome some 
hurdles, from storing and moving data to integrate and 
analysing it, which will require a substantial cultural 
shift. Moreover, similar problems will appear in many 
other fields of life science. As an example, the challenges 
that neuroscientists have to face in the future will be 
even greater than those we nowadays deal with the next 
generation sequencing in genomics. The nervous system 
and the brain are far more complicated entities than the 
genome. Today, the whole genome of a species can fit 
on a CD, but in the future how we will handle the brain 
which is comparable to the digital content of the world. 
Therefore, new technological methods more effective 
and efficient must be found, to serve the needs of 
scientific search. Solving that “bottleneck” has enormous 
consequences for human health and the environment.
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