
Abstract

In the big data era, conventional bioinformatics seems to fail in managing the full extent of the available genomic 
information. The current study is focused on olive tree species and the collection and analysis of genetic and 
genomic data, which are fragmented in various depositories. Extra virgin olive oil is classified as a medical food, 
due to nutraceutical benefits and its protective properties against cancer, cardiovascular diseases, age-related 
diseases, neurodegenerative disorders, and many other diseases. Extensive studies have reported the benefits 
of olive oil on human health. However, available data at the nucleotide sequence level are highly unstructured. 
Towards this aim, we describe an in-silico approach that combines methods from data mining and machine 
learning pipelines to ontology classification and semantic annotation. Fusing and analysing all available olive 
tree data is a step of uttermost importance in classifying and characterising the various cultivars, towards a 
comprehensive approach under the context of food safety and public health.

Introduction
The “Big Data” era is here and now. The amount of 
digitised data produced in modern society is increasing 
at an exponential rate and is estimated to account for 
five Tb (terabytes) for every human by 2020 (Egan 2013). 
Large-scale data is being generated each second in a 
wide range of areas, such as social networks, business 
and finance, and biosciences, posing a great challenge 
for data collection, storage, processing and analysis. In 
life sciences, the revolution following next-generation 
sequencing (Bahassi and Stambrook, 2014; Hui, 2014; 
van Dijk et al., 2014) the Human Genome Project (Collins 
et al., 2003; Green et al., 2015), the advances in protein 
structure determination (Giege, 2013; Hekmat, 2015; 
Gavira, 2016), the development of biomedical and health 
informatics and of imaging informatics (Andreu-Perez 
et al., 2015; Binder and Blettner, 2015) have inevitably 
led to an unprecedented data explosion. Consequently, 
biological data generated by genomics, proteomics, 
transcriptomics and metabolomics are characterised by 
a higher order complexity. 

The advances in bioinformatics over the last decades 
has dramatically empowered researchers in handling 
omics information. An extensive set of computational 
tools, algorithms and databases have been developed 
for data analysis (Berger et al., 2013). Still, at the rate at 
which data is generated and the ever increasing needs 
for storage, processing and meaningful analysis the 
spotlights are on the realm of bioinformatics. Moore’s 
law predicts that computing power and storage capacity 
doubles every 15 years, whereas genomic data have 
grown tenfold every year since 2002 (Moore, 1965; Kahn, 
2011). Storage space availability and computational 
power cannot keep up and fulfil the needs for rapidly 
expanding data-driven research domains (Papageorgiou 
et al., 2018). Genomic raw data are not always useful as 
they come out from NGS and Illumina pipelines. The 
extraction, analysis and collection of data or the way they 
are annotated in databases, is far from to be standardised. 
Furthermore, genomic datasets are packed with noise or 
erroneous information (Fan et al., 2014).

High-performance computing, smarter and faster 
algorithms and parallelisation for storage and processing 
seem to be the answer for data handling. As an example, 
column-oriented database systems have outmatched 
raw-oriented representation for data storage, enabling 
higher compressibility (Abadi et al., 2009). Moreover, 
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compressive algorithms have been developed which 
enable direct processing of the compressed data (Loh 
et al., 2012; Berger et al., 2016). Cloud computing 
infrastructures either driven by major software 
companies such as MS Azure and AWS, or joined multi-
national initiatives, such as the Elixir1 programme in 
Europe, strive towards the larger goal of unified and 
standardised metagenomics. The present study is focused 
on organising and mapping all available and dispersed 
olive tree nucleotide sequences to characterised regions 
on the reference genome of the recently published wild 
olive tree variant (Olea europaea var sylvestris) (Unver 
et al., 2017).

The olive tree is one of the most ancient plants on 
earth and is primarily cultivated in the Mediterranean 
region which produces 90% of the olive oil consumed 
worldwide and controls almost 80% of the market share 
in exports (Bartolini and Petruccelli, 2002; Vasto et al., 
2014). Olive oil is the principal source of healthy fatty 
acids of the Mediterranean cuisine and is perceived as 
“superfood” rich in beneficial compounds (Vasto et al., 
2014; Gerber and Hoffman, 2015; Martinez-Gonzalez 
et al., 2015). Extra virgin olive oil, rich in phenolic 
components, such as polyphenols (Barbaro et al., 2014; 
Rigacci and Stefani, 2016), has been extensively studied 
for its antimicrobial, antioxidant and anti-inflammatory 
effect (Cicerale et al., 2012). Additional to its 
nutraceutical benefits, the consumption of olive oil has 
been associated with reduced risk of various diseases, 
establishing it as a medical food. Indeed, many studies 
have denoted the protective effects of extra virgin olive oil 
for cardiovascular disease (Estruch et al., 2006; Estruch 
et al., 2013), diabetes (Salas-Salvado et al., 2011, Salas-
Salvado et al., 2014), age-related and neurodegenerative 
diseases (Khalatbary 2013; Rodriguez-Morato et al., 
2015). Olive oil phenols have also been observed in 
several cancer cell lines to inhibiting proliferation and 
promote apoptosis, thus impending tumour aggregation.

The olive tree has been the subject of intensive 
research, whereas little is known about the phylogenetic 
relationships with other species. However, the molecular 
bases which conceal the differences between cultivars 
remain poorly understood. A resourceful pipeline for the 
analysis of the olive tree genetic and genomic information 
is essential towards the extraction of reliable conclusions 
about the molecular mechanisms of action of the olive 
tree and its beneficial effects on human health. On top 
of that, humanity will have to deal with the impact of 
climate change in the following years. Species in the 
plants’ kingdom are profoundly affected, especially the 
olive tree, and climate change is posing a significant risk 
in olive cultivars. The potentiality to cultivate in different 
climate conditions, and expand in non-traditional 
continents, is highly dependent on the genetic profile of 
the species. The present study is an important precursor 
for handling and analysing raw genomics and genetics 
data from plants. The aim is to fill in the gaps in such 

1https://elixir-europe.org/

analysis through filtering, clustering and classification 
with the use of ontology terms to discover the relational 
nodes of the available information. A data mining 
pipeline was performed on available genomic data of 
several species of the Olea genus, and we have developed 
an approach that may help to annotate plant genomic 
sequences better. 

Methods
Data Collection
The dataset of genomic sequences was built by 
collecting data from the Nucleotide database of the 
NCBI. Keywords used for the retrieval and extraction 
of data were: “Olea europaea”,  “europaea”, “protein”, 
“dna”, “nucleotide”, “genome”, “clone”, “cultivar”, “wild 
species”, “propagating material”, “subspecies”, “Oleaceae”, 
“olive”, “gene”, “protein” and “Olea”. The analysis of the 
collected sequences was performed on three basic 
layers interacting with each other: the size of sequences, 
ontologies and nucleotide sequence similarities.

Data Filtering – First level of analysis
The dataset of nucleotide sequences obtained was 
filtered using the MATLAB platform and programming 
language. To reduce the noise, partial and variant 
sequences were removed from the dataset using a set of 
regular expressions. The new dataset, containing only 
full sequences, was then split into three sub-datasets by 
sequences’ length as follow:
Group A: sequence length ≤ 1,000 bases
Group B: 10,000 bases ≤ sequence length ≥ 1000 bases 
Group C: sequence length ≥ 10,000 bases 
The dataset was split by sequence length because the 
goal was to isolate and focus on areas which correspond 
to protein sequences. As a result, Group A and Group B 
were used in the second level of analysis. 

Data Mining and Semantic – Second level 
of analysis
Different groups of datasets were characterised by 
ontologies using clustering and classification algorithms. 
In this direction, the Bioinformatics Toolbox2 was mainly 
employed for the computation, development, acquisition 
and modelling as a high-performance language for 
computing and programming, in a user-friendly 
operating environment (Cai, Smith et al., 2005). In this 
direction, on the basis of the second level of analysis, 
a new database was created containing individual sub-
datasets including: a) chloroplast, b) mitochondria, 
c) microsatellite, d) cultivars, e) protein, f ) helicase, g) 
ATPase, h) plastid, i) trn gene, j) enzyme, k) species  
(Figure 1). Besides, the protein dataset was further 
categorised into smaller individual datasets, as follows: 
a) ribosomal, b) phosphatase, c) E3, d) FAR, e) Fbox, f ) 
kinase, g) zinc-finger, h) pentatricopeptide.
2https://www.mathworks.com/products/bioinfo.html
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Analysis of genetic information – Third 
level of analysis
The third level of analysis consisted of grouping 
data obtained by the second analysis level by strict 
correlations of gene information. A classification 
function was created with the BLASTClust algorithm, 
in the Bio Linux operating system, to identify genetic 
similarity/dissimilarity between each genomic sequence 
BLASTClust inputs were nucleotide sequences that were 
analysed with the following parameters’ values: coverage 
over 90% of the length of each sequence, with a 95% 
similarity cut off, and for the full-length (100% query 
cover) sequence, a 70% similarity cut off.

Results and Discussion
Data collection
During the data collection stage, we were able to put 
together more than 420000 nucleotide sequences from 
NCBI, which were then mapped on the genome of the 
wild olive tree, called “oleaster”, which was assembled 
and annotated by Unver et al. (2017) (Unver, Wu et al., 
2017). 

Data Filtering – First level of analysis 
From the original pool of sequences, 8871% were 
classified as complete sequences and worthy of further 
investigation, while the remaining sequences (1129%) 
were partial or incomplete. The composition of the 
dataset was extremely heterogeneous; we indeed 
identified several genome regions of 15 different species 
of the genus Olea (Table 1), genome regions of 17 
species of the plant kingdom and genome regions of 
21 microorganisms, most of them affecting directly of 
indirectly the olive tree phenotype. From the filtered 
full-length sequences, 8674% referred to the genus Olea 
and particularly to the ontologies europaea and oleaster. 
In more detail, within the Olea europaea dataset were 
identified sequences with the ontologies “europaea”, 
“cuspidata”, “laperrinei”, “cerasiformis”, “guanchika” 
and “maroccana”, which represent the subspecies of 
Olea europaea species, and 74% of the sequences were 
uncharacterised and represented as “orphan” sequences 

within Olea europaea species. In the remaining filtered 
data set, nucleotide sequences of several species of the 
genus Olea were identified, including Olea exasperata, 
Olea capensis with the ontologies “hochstetteri”, 
“macrocarpa”, “enervis”, “capensis” and “welwitschii”. In 
total, 72 cultivars were identified in the filtered dataset 
and another 20 cultivars discovered in the noise dataset 
with the partial and variant.

Regarding the split of the sequence pool by sequence 
length, 65,521% of the filtered sequences were in length 
Group A, 29,345% were in length Group B, while the rest 
5,132% belonged to the length Group C. 

Data mining and Semantics on Olea eu-
ropaea - Second level of analysis 
After the collection of all the available genetic and 
genomic information on the Olea europea, the possible 
relationships between the nucleotide sequences had to 
be identified. To this aim we needed to determine the 
integral nodes inside the selected dataset. Individual 
subgroups based on ontologies were filtered against the 
thousands of entries in Groups A and B. As an example, 

A/A Species Ontologies

1 Olea europaea Sylvestris 

Europaea
cuspidata/africana/indica/
ferruginea 
Laperrinei
cerasiformis
guanchika
maroccana

2 Olea exasperata -
3 Olea capensis hochstetteri

macrocarpa
enervis
capensis
welwitschii

4 Olea lancea -
5 Olea paniculata -
6 Olea salicifolia -
7 Olea rosea -
8 Olea borneensis -
9 Olea neriifolia -
10 Olea brachiata -
11 Olea javanica -
12 Olea tsoongii -
13 Olea schliebenii -
14 Olea chimanimani -
15 Olea woodiana woodiana

Table 1. Ontologies per species identified in the dataset of the 
genus Olea
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Figure 1. Percentage of Olea europaea nucleotide sequences in 
the individual sub-groups.
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in the sub-dataset under the ontology “chloroplast”, 1439 
nucleotide sequences were clustered with a sequence 
average length of about ≈3841 bases 97,35% of the 
sequences referred to Olea europaea, while in the same 
group 12 species of the genus Olea were identified, three 
other species of the plant kingdom and four cultivars of 
the species Olea europaea europaea.

Similarly, the sub-dataset under the ontology 
“mitochondrial” contained 1439 sequences whose 
average length was about 1,241 bases. Among them, 
we identified two species of the genus Olea, 71,9% Olea 
europaea and 2,08% Olea exasperata, two other species 
of the plant kingdom and ten cultivars of the species 
Olea europaea europaea. Also, the sub-group under 
the ontology “micro satellite“, contained 343 sequences 
with mean sequence length ~270 bases, was composed 
of 96,5% of Olea europaea sequences and the two 
subspecies, europaea and cuspidata. What is more, in 
the sub-group under the ontology “helicase”, the 70,06% 
of sequences referred to Olea europaea and in the sub-
dataset under the ontology “enzyme“, Olea europaea 
sequences covered 74,27% of the dataset. The dataset 
under the ontology “trn” included 29 species, among 
which, two were Olea europaea, with six subspecies, and 
Olea capensis, with four subspecies. 

On top of the above, in the dataset related to protein 
regions, 49 keywords with remarkable repeatability were 
identified, and 76,81% of the whole pool of sequences 
referred to Olea europaea, variant Sylvestris. Among 
the 49 keywords, eight became distinct and isolated 
from the dataset under the ontology “protein“. The 
keyword “ribosomal”, representing 15,27% of the dataset, 
“kinase” 30,06%, “E3” 9,85%, “phosphatase” 8,99%, 
“pentatricopeptide” 7,01%, “Fbox” 4,53% and “fatty 
acid- and retinol-binding protein (FAR)” 2,89% of the 
entire dataset, respectively. Lastly, based on the genetic 
information, we were able to identify nucleotide chains 
which bear the zinc-finger motif, representing the 8,67% 
of the protein dataset.

Analysis of genetic information – Third 
level of analysis
We were able to correlate nucleotide sequences of sub-
datasets into clusters based on their genetic similarity. 
Clusters were made by considering that a cluster should 
have at least five nucleotide sequences with genetic 
similarity above the predefined threshold to be annotated 
as a cluster. Most of the sequences belonging to the 
length Group A, in the sub-datasets under the ontologies 
“trn” and “microsatellite”, formed the highest number of 
clusters, seven and six respectively. The sub-group under 
the ontology “chloroplast” revealed four clusters and the 
sub-group under the ontology “mitochondrial” were all 
grouped in one cluster. The other sub-groups did not 
reveal any cluster. In total, the length Group A marked 
19 clusters. Results showed that genomic sequences 
annotated as unknown sequences were clustered in an 
equal percentage as appeared in the initial dataset of 

Olea genus. Ultimately, the clustering results revealed 
that the hybrid pipeline could work well as a prediction 
tool.

Conclusions
This work represents the first attempt to cluster and 
identify olive tree cultivars based on their genome and 
genetic information. To date, cultivar assignment is done 
on the merit of morphology and pedigree in known 
breeds of the olive tree. However, since only recently 
the full genome of the Olea europaea variant was made 
public, it is now feasible to map on it all fragmented 
sequences of the olive tree genera and produce a set 
of genes or a gene panel that will be used to identify 
each cultivar with high accuracy genetically. Olive tree 
genetic fingerprinting holds great promise in the future 
for advanced control of olive tree breeding and olive oil 
that is consumed by the masses under the prism of food 
safety and public health.

Key Points 

•	 Data mining and machine learning pipelines for 
the classification of olive tree cultivars.

•	 Olive tree genetic fingerprinting under the context 
of food safety and public health.

•	 Nutraceutical bioinformatics for olive oil as a 
medical food.
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