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The discovery of a functional relationship between 
human diseases and non-coding RNAs (ncRNAs) is not 
new. In the last decade, it improved the elucidation of 
many diseases’ mechanisms and the improvement of 
therapeutic approaches (Lekka and Hall, 2018; Wang et 
al., 2016; Yang et al., 2014). Nevertheless, the function 
of many ncRNAs is still unclear or completely unknown, 
and therefore, their role in human diseases is difficult, 
if not impossible, to be identified. We have developed 
a new system, called LP-HCLUS, that is able to predict 
previously unknown disease-ncRNA associations by 
exploiting multi-type hierarchical clustering techniques.

Differently from other approaches, LP-HCLUS 
is able to analyse and benefit from heterogeneous 
networks of interactions/relationships among multiple 
types of entities (e.g., diseases, ncRNAs, target genes) 

and relationships between them. To this aim, the 
proposed method first estimates the strength of the 
disease-ncRNA associations, exploiting both direct 
and indirect relationships. It constructs a hierarchy of 
heterogeneous clusters based on known and estimated 
relationships between diseases and ncRNAs. Finally, 
LP-HCLUS uses the generated clusters to induce new 
relationships, associating each of them with a certainty 
score. We conducted several experiments, comparing 
the performances achieved by LP-HCLUS with those 
obtained by two different competitors: HOCCLUS2 (Pio 
et al., 2013) and ncPred (Alaimo et al., 2014). In particular, 
we analysed two different datasets: HMDD v3.0, which 
contains data about relationships between diseases and 
miRNAs, and a dataset constructed integrating different 

Figure 1. The workflow of the LP-HCLUS method.
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state-of-the-art data sources (Chen et al., 2013; Helwak 
et al., 2013; Bauer-Mehren et al., 2010; Jiang et al., 2009). 

The results show that our system is able to 
outperform its competitors, and it can help biologists 
to conduct more focused research. Such a conclusion 
is also confirmed by a qualitative analysis conducted 
on the predicted associations that showed that many 
associations predicted by LP-HCLUS with a high 
certainty score have been subsequently validated and 
introduced in a more recent version of HMDD dataset 
(v3.2). The importance of such a development is also in 
its easy transfer for applications in any biological study 
involving heterogeneous data from different sources and 
types (e.g., different omics data, chemicals, biochemical 
and structural data, etc.).

Availability of data and materials
The system LP-HCLUS, the adopted datasets and 
all the results are available at: http://www.di.uniba.
it/~gianvitopio/systems/lphclus/
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