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The reconstruction of gene regulatory networks (GRNs) 
from gene expression data is pivotal for understanding 
gene regulatory mechanisms and processes. In this 
context, machine learning and big data analytics tools 
can be considered fundamental. However, most existing 
methods (i) produce poor results when the amount of 
labelled examples is limited or when no negative example 
is available and (ii) they are not able to exploit information 
extracted from GRNs of other (better studied) related 
organisms.

We overcome these limitations by proposing 
an innovative transfer learning method, called 
BioSfer (Mignone et al., 2020), which can exploit the 
knowledge about the GRN of a source organism for the 
reconstruction of the GRN of the target organism. In the 
first stages, we identify two predictive models to discover 
unknown links for both the considered GRNs. In the final 
stage, we build a new geometrically-combined model, 
which can identify unknown links better. Moreover, the 
proposed method is natively able to work in the positive-
unlabeled setting, where no negative example is available, 
by fruitfully exploiting a set of unlabeled examples. In 
our experiments, we reconstructed the human GRN by 
exploiting the knowledge of the GRN of M. musculus. The 
qualitative analysis showed that the proposed method is 
able to identify biologically plausible gene regulations 
that are not identified by other tools. Results showed 
that the proposed method outperforms state-of-the-art 
approaches (Zhang et al., 2017; Wang et al., 2017; Long 
et al., 2014; Huynh-Thu et al., 2010; Aibar et al., 2017; 
Mignone et al., 2018) and identifies previously unknown 
functional relationships among the analysed genes.
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