
Abstract

Nowadays, Deep Learning is taking the world by a storm, known as a technology that makes use of Artificial 
Neural Networks to automatically extrapolate knowledge from a training data set, then uses this knowledge to 
give predictions for unseen samples. This data driven paradigm gained a widespread adoption in many disciplines, 
from handwriting recognition, driving an autonomous car to cracking the 50-year-old protein folding problem. 
With this review, we shed some light on the concepts of Deep Learning and provide some visualizations, skim 
over the different architectures such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), 
Recurrent Neural Network (RNN) and touch upon the modern architectures such as Transformers and BERT. 
We also provide various examples targeting the genomics field, reference utilities, libraries useful for newcomers 
and disseminate our feedback.

Introduction
In few years, Deep Learning (LeCun et al., 2015), a 
subset of Machine Learning (Figure 1), has become one 
of the the most successful and promising technologies, 
as it was able to outperform the countless methods and 
approaches across many fields and in diversified tasks. At 
the core of this paradigm shift are the “Artificial Neurons”. 
Initially, they were conceptualized to understand and 
mimic the physiology and functioning of the human 
brain, in a computational manner (McCulloch and Pitts, 
1943). Interconnecting those neurons produced Artificial 
Neural Networks (ANNs). Over the past decade, a wide 
variety of Neural Network architectures were designed 
(DNN, RNN, CNN, GAN...). So far, they are contentiously 
flourishing (Transformer, GPT, BERT...). Consequently, 
new state-of-the-art performances are continuously 
achieved with endless opportunities.

Machine Learning
Machine Learning algorithms are a subset of Artificial 
Intelligence. They are suitable for problems such 
as (Computer Vision, Voice Recognition, Face 
Recognition....) that traditional programming paradigm 
may not solve, due to their complexities and high 
variability. In general, Machine Learning entails 

four categories of learning: Supervised Learning, 
Unsupervised Learning, Semi-supervised Learning and 
Reinforcement Learning (Figure 2).
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Figure 1. Machine Leaning techniques fall under Artificial 
Intelligence umbrella. Deep Learning is a category of Machine 
Learning that relays heavily on Artificial Neural Networks.
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Supervised Learning
A Supervised Learning (Kotsiantis et al., 2006) approach 
consists of using the past experience data to train a 
Machine Learning Model to predict future ones, with 
respect to their classes. For instance, DECRES (Li et al., 
2018) is an example of Supervised Learning approach 
for genome-wide prediction of cis-regulatory elements. 
It delineated locations of 300,000 candidate enhancers 
genome wide and 26,000 candidate promoters (0.6% of 
the genome). MPRA-DragoNN (Movva et al., 2019) is 
another example, used for deciphering regulatory DNA 
sequences and noncoding genetic variants. It employs 
a (CNN)-based architecture to predict and interpret 
the regulatory activity of DNA sequences as measured 
by MPRAs. For a pedagogical purpose and to explain 
this concept, let us imagine a fictional system that tries 
to predict, for a provided DNA sequence as input, it is 
either an exon or an intron. This kind of problematic 
is called a “Binary classification problem”, in which the 
model tries to predict from a given input, which class of 
output it belongs to. With enough labelled data available, 
one can train a Deep Learning Model in supervised 
manner to resolve this classification problem, (Figure 
3). A Supervised Learning approach relies heavily on the 
labelled samples within the dataset, they teach the Deep 
Learning model how to differentiate between the various 
classes of the output to make accurate predictions.

Unsupervised Learning
An Unsupervised Learning (Ghahramani, 2004) occurs 
when the available data are not labelled at all. Its key 
concept is to find clues or features to cluster data and 
reveal their hidden relationships. This category of 

learning comprises different learning families: Clustering 
(Figure 4), Dimensionality Reduction and Generative 
algorithms. For instance, clustering the single-cell RNA-
seq data (Kiselev et al., 2019) discusses the challenges 
and strategies used to cluster the RNA-seq.

Semi-supervised Learning
Semi-supervised Learning lays in the middle between 
Supervised and Unsupervised Learning. It is often 
used when the available data are partially labelled. For 
instance, the Semi-supervised Learning was employed 
to classify microRNA in order to maximize the utility of 
both labelled and unlabelled data (Sheikh Hassani and 
Green, 2019). The results outperformed the state-of-the-
art miRDeep2 (Friedländer et al., 2012) and miPIE (Peace 
et al., 2018) methods, with an improved performance of 
8.3% and 4.2% in average AUPRC.

Reinforcement Learning
In contrast to the other learning algorithms, the 
Reinforcement Learning (RL) (Sutton and Barto, 
2018) has the particularity to be suited for unknown 
environments. RL was used for drug design (Popova et 
al., 2018), genome Assembly (Xavier et al., 2020), protein 
interaction network constructing (F et al., 2015), where 
an infinite number of possibilities exist. RL formalizes 
the problem as a learning agent that interacts with 
its environment through a series of selected actions. 
Each action generates a new state that may impact the 
environment. The agent tries to learn how to interact as 
well as possible with this environment by selecting the 
best possible actions, which are rewarded as good or 
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Figure 3. An example of Supervised Learning, in which the model 
is thought to classify the type of sequences (exon or intron). The 
model is trained using a labelled training dataset, then assessed 
using the testing dataset to validate the model performance.

Figure 2. Machine Learning comprises four categories of 
learning: Supervised Learning, Unsupervised Learning, 
Semi-supervised Learning and Reinforcement Learning.
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bad, depending on the newly generated state and their 
impacts on this environment, (Figure 5).

Deep Learning
Deep Learning is a subset of Machine Learning that 
demonstrated a great potential in several areas. In 
genomics for instance, it was used to learn and represent 
the hierarchical organization of yeast transcriptomics 
machinery (Chen et al., 2016), to understand gene 
regulation (Singh et al., 2017), to predict enhancer-
promoter interaction from genomic sequence (Singh 
et al., 2019), to create artificial human genomes using 
generative models (Yelmen et al., 2019), to predict 
cell type specific transcription factor binding from 
nucleotide-resolution sequential data (Quang and Xie, 
2019), to model and design protein structure (Gao et al., 
2020) and so on. In essence, DL is characterized by the 
use of Artificial Neurons that serve as the building blocks 
for the different Neural Network architectures.

A brief history
Deep Learning is not new, many of its concepts date back 
to more than half a century. Initially, (McCulloch and 
Pitts, 1943) put the first brick and proposed a simplified 
version of a neuron, as an attempt to understand how 
the brain could produce very complex patterns using 
only simple interconnected cells (biological neurons). 
(Rosenblatt, 1957) proposed the Perceptron, a simplified 
neuron which had true learning abilities for doing a binary 
classification. Afterwards, came the first Feedforward 
Multilayered Neural Networks (Ivakhnenko and Lapa, 

1966) (interconnected layered neurons). A breakthrough 
was made by (Le Cun et al., 1989), who was able to 
train a Convolutional Neural Network (CNN) named 
LeNet to recognize handwritten digits. Decades later, a 
Deep Convolutional Neural Networks model “AlexNet” 
(Krizhevsky et al., 2012) made a quantum leap in 
computer vision. It won the ImageNet Large Scale Visual 
Recognition Challenge 2012 with a phenomenally great 
margin. Also, it demonstrated for the first time, the 
automatic feature learning aspect. Recently, DeepMind 
(Senior et al., 2020) was able to crack the 50-year-old 
Protein Folding Prediction problem, which is another 
milestone for understanding biology using Artificial 
Intelligence.

Underlying Concepts
Artificial Neurons
Artificial Neurons or simply neurons are the backbone of 
the Deep Learning technology. A neuron is comprised of 
a single input layer and one output node, the input layer 
contains n nodes that transmit n features. The output y 
is calculated using the inputs and their weights (i.e. the 
weighted sum), where each xi from the input vector X = 
[x1,...,xn ] is multiplied respectively with its wi from the 
learning weight vector W = [w1,...,wn ], an additional bias 
variable b is added to capture the invariant part of the 
prediction. An activation function A is applied to the 
weighted sum which decides whether the output of this 
neuron should be activated or not, (Figure 6).

              		  	 (1)
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Figure 4. An example of Unsupervised Learning (Clustering), 
in which the model does not have any clues about the input, 
but it was able to distinguish 3 distinct clusters of sequence 
data. The samples from each group share a certain number of 
features, thus they appear close to each other.

Figure 5. Reinforcement Learning agent interacting with its 
environment. As the agent emits an action (Ai), the environ-
ment produces a new state (Si+1) and a new reward (Ri+1).

http://dx.doi.org/10.14806/ej.27.0.990


Activation function
The main idea behind the activation function (Nwankpa 
et al., 2018) is adding a non-linearity to the neural 
network, which allows the network to capture more 
complex pattern inherent within the data. The choice of 
this function impacts profoundly the design of a neural 
network, it is a task specific. For instance, a binary 
classification will definitely have a different activation 
function then a multi-class probability classification. A 
multitude of activation functions exist, (Nwankpa et al., 
2018) compiles majority of them and outlines the current 
trends in the applications and usage of these functions in 
practical deep learning deployments against the state-of-
the-art research results.

Loss function
One of the most important questions in designing 
a Neural Network architecture is how to gauge its 
performance. The loss or cost function is the answer. It 
quantifies how the Neural Network model is performing 
by calculating the difference between the output y and 
the predicted output ŷ. In other words, it measures how 
far or close the predictions are from the excepted values. 
Many loss functions exist, selecting a particular one 
impacts profoundly the learning process of the Neural 
Network (Hennig and Kutlukaya, 2007). Advanced 
analyses were conducted by (Wang et al., 2020) that 
summarize and analyse 31 classical loss functions in 
Machine Learning.

Optimization
At the outset, most of the Neural Network models will not 
have the best performances (a poor prediction and very 
high Loss). During the training, an optimizer algorithm 
is configured with the model. Its goal is to minimize the 
loss function and maximize the prediction by tuning 
parameters of the model in response to the output of the 
loss function, (Figure 7). Several  optimization algorithms 
exist, (Choi et al., 2020) empirically compared  them.

Neural Networks
A single neuron may not be enough to learn all the 
necessary features for complex tasks. Interconnecting 
those neurons produces advanced architectures called 
Neural Networks, as they are capable of learning more 
complex patterns than a single neuron, (Figure 8). A 
Neural Network is organized in form of layers, each layer 
contains a number of neurons. The layers in between the 
input and output layers are called the hidden layers. A 
Neural Network that has only one or two hidden layers 
is named a “Shallow Neural Network” as opposed to a 
“Deep Neural Network” which has several hidden layers. 
DeeplyEssential (Hasan and Lonardi, 2020) is an example 
of the Deep Neural Network, conceived to predict 
the critical genes for the survival and reproduction of 
bacteria and microbes. It consists of an input followed 
by six hidden layers, in which the rectified linear unit 
(ReLU) is used as the activation function. The output has 
two classes (binary classification) where Sigmoid is used 
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Figure 6. A single neuron comprised of inputs and their re-
spective weights, the bias, the arithmetic operation, the acti-
vation function and the output, mathematically expressed with 
the formula (1]).

Figure 7. The optimizer looks to minimize the loss function by 
tuning the weights of the neurons.

Figure 8. An example of a Shallow Neural Network comprised 
of an input layer (two neurons [x11,x12 ]), a hidden layer in the 
middle, (three neurons [x21,x22,x23 ]) and the output layer (2 
neurons [y1,y2 ]).
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as the activation function. The binary cross-entropy is 
chosen as the loss function.

Deep Learning architectures 
Convolutional Neural Network
Convolutional Neural Network (CNN) is one of the most 
successful Neural Network architectures. Originally, it 
was inspired from the work of (Hubel and Wiesel, 1962) 
to understand the cat’s visual cortex. CNN became 
so famous and has a wide variety of applications. For 
instance, it was successfully implemented to detect 
COVID-19, given a chest X-ray image. It predicts if the 
patient has the COVID-19 or not with 98.92% average 
accuracy (Irmak, 2020). CNN was also used to learn the 
functional activity of DNA sequences from genomics 
data. It was trained on a compendium of accessible 
genomic sites mapped in 164 cell types by DNase-seq 
and demonstrated greater predictive accuracy than 
previous methods (Kelley et al.).

CNN architecture consists of an input layer, followed 
by a Convolution layer that produces feature maps, then 
hidden layers (the Pooling layers, Normalization) and 
finally the output, (Figure 9).

Convolution layer
The outstanding capacity of CNN is owed to its ability 
to analyse spatial information and automatically extract 
features with the help of a convolution operation. The 
convolution operation is a mathematical operation 
between the input and the kernels, (Figure 10). 
Numerous convolution operations exist, such as 
standard convolution, dilated convolution, transposed 
convolution and separable convolution.

Pooling layer
The Pooling layer aims to reduce the resolution of the 
feature maps produced by the Convolution layer. The 
most famous pooling layers are: Average and Max 
Pooling layers, (Figure 11). Average Pooling takes the 
average of a range of numbers. Max Pooling takes the 
maximum number within a range of numbers.

Padding
Padding is simply the process of adding layers of zeros 
to the input, as to avoid the problem of losing values on 
corners or shrinking the input, (Figure 12).

Stride
While convolving, the stride describes how the 
convolution window moves over the input. By default, it 
slides by one at each step, (Figure 13).

Fully connected layer
This layer often appears at the end of the CNN 
architectures to sum the features produced by the 
previous layers and make predictions for the output, 
(Figure 9).

Recurrent Neural Network
Recurrent Neural Network (RNN) architecture is 
specially designed for sequential data, such as genomics 
or text. It is able to model space-temporal structures. 
Thanks to its hidden states that serve as a memory and 
keep track of the previous state. They provide a context 
for the current prediction, (Figure 14). For instance, 
RNN-VirSeeker (Liu et al., 2020) successfully used RNN 
to outperform three widely used methods: VirSorter, 
VirFinder and DeepVirFinder in identifying short viral 
sequences, by obtaining 92% precision for sequences of 
500bp.
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Figure 9. A example of a Convolution Neural Network comprised of the input, a Convolution layer, Feature maps, Pooling layer, 
Fully connected layer and the output.
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One drawback of the vanilla RNNs is the long-
term dependencies problem, formulated as Exploding 
and Vanishing Gradients. As a remedy, special variant 
of RNNs named respectively, ‘‘Long Short Term 
Memory’’(LSTM) and ‘‘Gated Recurrent Unit’’(GRU) are 
introduced.

Long Short Term Memory
Long Short Term Memory (LSTM) (Hochreiter and 
Schmidhuber, 1997) is a variant of the RNN architecture 
that tries to solve the Vanishing Gradient Problem. 
Internally, the LSTM cell differs from the RNN cell. It 
has three control gates: forget, update and output gates, 
(Figure 15). The Forget gate allows the cell to forget 
information in the cell state.

The Update gate allows the cell to place a new value 
in the memory (cell state).

The Output gate applies the Sigmoid activation 
function and produces the output of the current 
timestep. ProLanGO (Cao et al., 2017) is an example of 
LSTM that predicts protein functions. It converts the 
protein sequences into a language space “ProGO” based 
on the frequency of k-mers (around 500,000 protein 

sequences were employed). The Gene Ontology terms 
are encoded into a language space “LanGO”, as well as 
a neural machine translation model is built based on 
Recurrent Neural Networks that translates “ProLan” 
language to “GOLan” language.

Gated Recurrent Unit
Gated Recurrent Unit (GRU) (Cho et al., 2014) is another 
variant of the RNN architecture. It simplifies the LSTM 
by having only two gates: the Update and Reset gates, 
(Figure 16).

The GRU was successfully used for pan-specific 
prediction of HLA-I-binding peptides (Human leukocyte 
antigens) (Heng et al., 2020). The model performance 
was very good after 31 epochs. The prediction accuracies 
of the training and validation sets are, respectively, 87% 
and 85%.

Generative Adversarial Network
The particularity of the Generative Adversarial Network 
(GAN) (Goodfellow et al.) architecture is the competition 
aspect between two Neural Networks. One agent is the 
Generator (G), the other one is the Discriminator (D), 
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Figure 10. An example of a standard convolution calculation. 
The window size and kernel is 4. The output ci is calculated 
based on the input and the kernel.

Figure 11. (a) Average Pooling operation calculates the average 
value for a given range. (b) Max Pooling operation looks for the 
maximum number in a given range.

Figure 12. An example of zero padding, where zeros are ap-
pended and prepended to the original input to avoid losing x1 
and xn values.

Figure 13. An example of a convolutional filter that convolves 
over the input. Its window size is four and it strides by one at 
each step.

http://dx.doi.org/10.14806/ej.27.0.990


they contest with each other. The Generative tries to 
synthesize fake data that resemble to real ones, whereas 
the Discriminative tries to distinguish between the real 
and the fake ones, (Figure 17). G is trained in a such way 
to maximize the probability of D making a mistake. For 
instance, GAN was used for gene expression inference 
to approximate the joint distribution of landmark for the 
target genes and to learn their conditional distribution 
given the landmark gene (Ghasedi Dizaji et al., 2018).

Transformers
One of the modern Deep Learning architectures are 
Transformers (Vaswani et al., 2017). They are game 
changers as they have outperformed the previous 
architectures in many tasks. Initially, they were designed 
for textual data. Recently, it was shown that they can 
work with any kind of data. The transformer model 
relies heavily on the Attention mechanism. Basically, 
the Attention mechanism tries to learn and score the 
part of the data that is more important within a context. 
A transformer is comprised of two parts, Encoders 
and Decoders, (Figure 18). The stacked encoders are 
responsible for encoding the information while the 
stacked decoders decode it. The size of the stack is related 
to the architecture design. For instance, Transformers are 
used for improving the compound–protein interaction 
prediction by sequence-based Deep Learning with self-
attention mechanism and label reversal experiments 
(Chen et al., 2020). Transformers were also used to learn 
the protein language (facebookresearch/esm, 2021), 
in which the Unsupervised Learning was employed to 
train a deep contextual language model on 86 billion 
amino acids across 250 million protein sequences 
spanning evolutionary diversity. The resulting model 
contained information about biological properties. 
The model learned the representation space in a multi-
scale organization reflecting structure from the level 
of biochemical properties of amino acids to remote 
homology of proteins.

BERT
Bidirectional Encoder Representations from 
Transformers (BERT) (Devlin et al., 2019) is based on 
the Transformer architecture. It caused a stir in the Deep 
Learning community by achieving new state-of-the-art 
results on several tasks and in diversified disciplines. 
BERT is trained in two steps: pre-training and fine-
tuning. During the pre-training phase, Unsupervised 
Learning is employed to train the model on unlabelled 
data. Consequently, a general purpose pre-trained model 
is obtained that can be fine-tuned for a specific problem 
using its labelled data. BERT uses two learning strategies: 
Masked Language Model (MLM) and Next Sentence 
Prediction (NSP). Regarding the MLM, the model 
randomly masks some tokens from the input sequence, 
then it tries to predict them based on the information 
provided by unmasked tokens in the sequence. For the 

NSP, the model needs to predict whether a given sentence 
is the subsequent sentence to the current one or not.

BERT technology is brand new. In genomics, for 
instance, it is used to decipher the language of non-
coding DNA (Ji et al., 2020). It was able to simultaneously 
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Figure 14. An unfold RNN cell. It has an input xt, a hidden state 
ht and an output yt at a timeslot t. V, U and W are respectively 
the hidden state, input and weight matrices.

Figure 15. The LSTM cell internal structure. At time t, the cell 
reads the input xt, updates the cell state ct and the hidden state 
ht using three gates that control the signal workflow.

Figure 16. The GRU cell simplifies the architecture of the 
LSTM. It has only two gates: the Update and Reset gates.
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achieve the state-of-the-art performance on many 
sequence predictions tasks, such as: identifying the 
transcription factor binding sites also predicting the 
proximal and the core promoter regions.

Genomic data
Deep Learning requires huge amount of data. Luckily, 
genomic data were collected, organized and stored in 
open access databases for several decades. For instance, 
GenBank® (Benson et al., 2013) is the NIH genetic 
sequence database, an annotated collection of all publicly 
available DNA sequence. Gene database (Ostell, 2013) is 
another example that integrates information from a wide 
range of species where it contains over 17 million entries. 
Such databases can serve as data sources to extract 
genomic data to train Deep Learning models in order to 
solve specific problems. Conventionally, datasets can be 
split into three subsets:
•	 training set is a subset of the original data used to 

train the model, 
•	 test set is a subset of the original data used to test the 

trained model,
•	 validation set is used to optimize the model during 

the development process.

Training
Training a Deep Learning model refers to the process of 
searching the best parameters that fit the model to the 
data set. While being trained, a Neural Network looks 
for the best values to tune its weights and obtain the best 
performances with the help of an optimization algorithm. 
The role of the optimizer is to minimize the loss function 
by reaching global minima. Neural Networks are trained 
iteratively. Each training iteration consists of a Forward 
propagation and Backward propagation passes in which 
a subset of the dataset named “mini-batch” is passed to 
the network. When the entire training set is consumed, 

it is called “Epoch”. The performance of a Deep Learning 
model depends on a multitude of hyperparameters. 
Hyperparameters refer to the parameters whose values 
are used to control the learning process. Tuning those 
hyperparameters refers to the process of deciding about 
their values that determine the network structure such as 
the number of hidden layers ..., also those that determine 
how the network is trained, such as the learning rate, 
epochs ... Setting them is one of the difficulties of the 
Deep Learning approach due to their considerable 
numbers and their empirical attitudes (Makwe and 
Rathore, 2021).
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Figure 17. An illustrative example of how the GAN architecture is trained. The Generator tries to synthesize sequences, while the 
Discriminator tries to distinguish between the real and fake ones.

Figure 18. The transformer inner architecture comprised of 
stacked encoders in which the input is encoded, followed by 
stacked decoders that decode the information. The size of the 
stack is related to the architecture design.
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Forward propagation
Forward propagation pass is when data flow from the 
input towards the output. It comprises all the calculations 
of the Neural Network weights for the prediction in a 
forward direction.

Backward propagation
Historically, training the Neural Networks was one of the 
big challenges. Hence, the Backpropagation (Rumelhart 
and McClelland, 1987) algorithm was introduced to fulfil 
this duty. The backward propagation pass is when data 
flow from the output to the input with the purpose to tune 
the model. The Neural Network gradients are calculated 
in the backward direction. The Backprop abstracts the 
extensive computations used to calculate and update the 
weights of the network in a backward propagation.

Hyperparameters
This section will discuss some important 
hyperparameters.

Initialization
Initialization refers to the strategy selected to initialize 
the weights of the network when it starts the learning 
process. A good initialization strategy may reduce 
training time and computational costs.

Regularization
Regularization represents the techniques put in place to 
fight the Overfitting. They are concerned with adjusting 
the prediction function.

Dropout
Dropout is a method where the not needed neurons 
are dropped from the network. It is used to reduce the 
overfitting.
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Framework Core Language License Creator

TensorFlow C++, Python Apache 2.0 Google

PyTorch C, Lua BSD Facebook

Keras Python MIT François Chollet

Caffe C++ BSD Berkeley

Deeplearning4j C++, Java Apache 2.0 Deeplearning4j community

Theano Python BSD University of Montréal

MXNet C++ Apache 2.0 Apache Foundation

CNTK C++ MIT Microsoft

Janggu Python GPL-v3 (Kopp et al., 2019)

DragoNN Python MIT Kundaje Lab

Kipoi Python MIT (Avsec et al., 2019)

Flax Python Apache-2.0 Google

Table 1. Details about some useful Deep Learning frameworks.

Name Description
Biopython A biological computation library.
Scikit-bio Library providing data structures, algorithms, and educational resources for bioinformatics.
PyEnsembl Interface to Ensembl reference genome metadata.
Pandas data analysis and manipulation tool.
NumPy A library to operate large, multi-dimensional arrays and matrices, along with a large collection of 

high-level mathematical functions.
Matplotlib A library that provides visualizations.
JAX NumPy on the CPU, GPU, and TPU, with great automatic differentiation for high-performance machine 

learning research.
Scikit-learn A library for Machine Learning.
bioconda A platform and language independent package manager that sports easy distribution, installation and 

version management of software, it provides bioinformatics related packages

Table 2. Some useful tools and libraries.

http://dx.doi.org/10.14806/ej.27.0.990


Normalization
Normalization is concerned with feature scaling 
techniques for data adjustment.

Common problems
Overfitting
Overfitting is the situation when the model learns too 
much on the used dataset, thus it gives good accuracy 
on the training data but does not generalize well on new 
data. It often appears when working with finite samples 
or limited datasets.

Underfitting
Underfitting is the scenario when the model has not learn 
enough from the data, thus it was not able to generalize.

Vanishing gradient
The Vanishing Gradient problem (Hochreiter, 1998) 
may happen when the network is comprised from 
several neural layers, in particular the Recurrent Neural 
Networks. In essence, Vanishing Gradient occurs when 
gradients are very small or zero. Thus, little to no training 
can take place and a poor predictive performance is 
noticed.
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Name Domain Architecture References Year

DECRES Genomics MLP http://dx.doi.org/10.1186/s12859-018-2187-1 2018
DFS MLP http://dx.doi.org/10.1089/cmb.2015.0189 2016
PEDLA MLP http://dx.doi.org/10.1038/srep28517 2016
lincRNA predict AE http://dx.doi.org/10.1186/s12859-017-1922-3 2017
NeuSomatic Variant calling CNN http://dx.doi.org/10.1038/s41467-019-09027-x 2019
seq2species CNN http://dx.doi.org/10.1101/353474 2019
Deep Variant CNN http://dx.doi.org/10.1038/nbt.4235 2018
Clairvoyante CNN http://dx.doi.org/10.1101/310458 2018
Clair RNN http://dx.doi.org/10.1101/865782 2019
CNNScoreVariants CNN http://dx.doi.org/10.1093/bioinformatics/btz901 2020
scvis Transcriptomics AE http://dx.doi.org/10.1038/s41467-018-04368-5 2018
MRCNN CNN http://dx.doi.org/10.1186/s12864-019-5488-5 2019
DeepCpG CNN & RNN http://dx.doi.org/10.1186/s13059-017-1189-z 2017
DeepImpute MLP http://dx.doi.org/10.1186/s13059-019-1837-6 2019
scIGain GAN http://dx.doi.org/10.1093/nar/gkaa506 2020
scDeepCluster AE http://dx.doi.org/10.1038/s42256-019-0037-0 2019
DeepSEA Epigenetics CNN http://dx.doi.org/10.1038/nmeth.3547 2015
DeepBind CNN http://dx.doi.org/10.1038/nbt.3300 2015
DanQ CNN & LSTM http://dx.doi.org/10.1093/nar/gkw226 2016
DeepLift CNN http://dx.doi.org/10.1101/737981 2020
DeepHistone CNN http://dx.doi.org/10.1186/s12864-019-5489-4 2019
AutoImpute Metagenomics AE http://dx.doi.org/10.1038/s41598-018-34688-x 2018
DeepMicrobes LSTM http://dx.doi.org/10.1093/nargab/lqaa009 2020
Meta2 AE https://arxiv.org/abs/1909.13146 2020
scScope AE http://dx.doi.org/10.1101/315556 2018
GeNet CNN https://arxiv.org/abs/1901.11015 2019
AlphaFold Proteomics Residual CNN http://dx.doi.org/10.1038/s41586-019-1923-7 2020
DeepCDpred Multi-stage FFNN http://dx.doi.org/10.1371/journal.pone.0205214 2019
trRosetta Residual CNN http://dx.doi.org/10.1073/pnas.1914677117 2020
DeepInterface CNN http://dx.doi.org/10.1101/617506 2019
MaSIF GNN http://dx.doi.org/10.1038/s41592-019-0666-6 2020
DRREP DNN http://dx.doi.org/10.1186/s12864-017-4024-8 2017
ESM Transformer http://dx.doi.org/10.1101/622803 2019

Appendix. A non exhaustive list of Deep Learning methodology applications targetting genomics.
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Exploding gradient
Exploding gradient  is a problem where large error 
gradients accumulate resulting very large updates 
to Neural Network model weights during training. 
Consequently, the model becomes unstable and unable 
to learn from the training data.

Frameworks
Recently, Deep Learning approach has witnessed a 
wide adoption. One of the many reasons is the plethora 
of available libraries and frameworks that emerged to 
support this trend. They save time and offer the necessary 
toolkits for rapid prototyping of new concepts. The 
Tables 1 and 2 summarize some of the widely used ones.

Limitations
Deep Learning faces many challenges in genomics, from 
which interesting to note:

The curse of dimensionality
Genomics is considered as a Big Data science. Taking in 
account the volume of the available datasets (Gigabytes), 
their heterogeneity (sequencing of coding or non-coding 
genes, gene variants...) and their variety, which can pose 
challenges for this approach.

Lack of data
Deep Learning requires a huge amount of data. 
Sometimes and for a specific problem, the available data 
are not enough to obtain good performance.

Imbalanced classes
Usually, the collected genomics data suffer from 
imbalanced ratio of instances per class. Thus, the DL 
model may fail to generalize about certain classes.

Model interpretation
Generally, it is considered to be a major problem of the 
Deep Learning  approach. Sometimes, it is difficult for 
the model designer to understand and interpret the 
learned patterns. This problem is known as the black 
box.

Conclusion
With the advancement in processing power, availability 
of toolbox for practitioners and abundance of genomics 
data, Deep Learning is delivering impressive results 
in various fields including genomics. In this work, we 
introduced the different concepts of this technology 
and supplied various use case examples, also pointed 
out some of its advantages, difficulties and challenges. 
Deep Learning can be a real opportunity for researchers 
to tackle various genomics problems in a data driven 
approach.
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