
Volume 14 Nr. 2
July 2008

• ChemGPS-NPweb
• ASPicDB: A database resource for

alternative splicing analysis
• Grid tutorials

and more ...

�	 EMBnet.news	 Volume 14 Nr. 2

Editorial
Here is another issue of EMBnet.news with plenty
to read. We start with a report on the third course
in Kenya, followed with a sum-up of the activities
of the ASBCB, that shows their activity in Africa and
their connections with the rest of the world. Then
we have an article on a very interesting tool that
allows one to navigate in biologically relevant
chemical space. A report on the new FP7 funded
LUPA project reveals how interesting it can be to
study human genetic disorders using the dog
as a model system. The ASPicDB, a database of
alternative splice patterns in human and mouse
genes, with monthly updates. A series of papers
is actually a tutorial on GRID usage for newcom-
ers, topped by an article on effective large scale
multitasking on a GRID environment. The next is-
sue is already in preparation but will only be out
after our AGM and 20th anniversary celebrations
in Bari, Italy, in September. As usual we invite our
readers to contribute to EMBnet.news and to en-
courage an even greater number of colleagues
to do so.

The editorial board: Erik Bongcam-Rudloff,
Domenica D’Elia, Pedro Fernandes, Kimmo
Mattila and Lubos Klucar.

Contents
Editorial...2
New tools for bioinformatics teaching................3
Introducing the African Society for Bioinformatics
and Computational Biology...............................5
ChemGPS-NPweb - a tool tuned for navigation
in biologically relevant chemical space............6
Bovine Trace To the traceability of beef............ 10
LUPA: Unravelling the molecular basis of
common complex human disorders using the
dog as a model system.................................... 12
ASPicDB: A database resource for alternative
splicing analysis.. 14
The Grid in practice.. 17
Simplifying job management on the Grid........26
Grid computing (4): Wuthering heights.............33
Protein spotlight 93.. 41
Node information..44

Editorial Board:
Erik Bongcam-Rudloff, The Linnaeus Centre for
Bioinformatics, SLU/UU. SE
Email: erik.bongcam@bmc.uu.se
Tel: 	 +46-18-4716696
Fax: 	 +46-18-4714525

Domenica D’Elia, Institute for Biomedical
Technologies - CNR, Bari, IT
Email: domenica.delia@ba.itb.cnr.it
Tel: 	 +39-80-5929674
Fax: 	 +39-80-5929690

Pedro Fernandes, Instituto Gulbenkian. PT
Email: pfern@igc.gulbenkian.pt
Tel: 	 +315-214407912
Fax: 	 +315-214407970

Lubos Klucar, Institute of Molecular Biology, SAS
Bratislava, SK
Email: klucar@embnet.sk
Tel: +421-2-59307413
Fax:	 +421-2-59307416

Kimmo Mattila, CSC, Espoo, FI
Email: kimmo.mattila@csc.fi
Tel: +358-9-4572708
Fax: +358-9-4572302

Protein Spotlight (ISSN 1424-4721) is a periodical
electronic review from the SWISS-PROT group of
the Swiss Institute of Bioinformatics (SIB). It is pub-
lished on a monthly basis and consists of articles
focused on particular proteins of interest. Each
issue is available, free of charge, in HTML or PDF
format at
http://www.expasy.org/spotlight

We provide the EMBnet community with a printed
version of issue 94. Please let us know if you like
this inclusion.

Cover picture: Kniphofia uvari, ‘Red hot poker’.
Nairobi, 2008 [© Erik Bongcam-Rudloff]

Volume 14 Nr. 2	 EMBnet.news	 �

New tools for
bioinformatics
teaching
Maria Wilbe and Erik Bongcam-Rudloff

Department of Animal Breeding and Genetics,
SLU, Sweden

For the third year the ILRI/BecA EMBNet node or-
ganized an introductory course in Bioinformatics
at the International Livestock Research Institute
(ILRI) campus in Nairobi, Kenya. The objective
was to introduce young scientists from east and
central Africa to use bioinformatics/computa-
tional biology in their research and to present
some of the biological resources available on
the ILRI-BECA bioinformatics platform.
The course is organized in collaboration with the
Swedish University of Agricultural Sciences (SLU),
Uppsala University (UU) and Linnaeus Centre for
Bioinformatics (LCB) funded by SIDA.

The course was 9 days long, from May 5 to 15,
2008. 24 participants from Uganda, Sudan,
Tanzania, Burundi, Somalia, Cameroon, Ethiopia
and Kenya attended the course. Futhermore

The course team: Erik Lagercrantz, Maria Wilbe, Erik Bong-
cam-Rudloff, Alvaro Martinez Barrio, Etienne de Villiers and
Saidimu Apale (not all in the picture)

the lectures were recorded on DVD and will be
used at the University of Buea, Cameroon and
Maseno University in Kenya.

Topics covered during the course were: se-
quence analysis and alignments, EMBOSS/wEM-
BOSS, Staden package, Unix/Perl basics, genom-
ics and comparative genomics, Artemis and
Artemis Comparison Tool and Ensembl.

Many course participants are learning new tools
and techniques that will be useful for them when
returning to their own laboratories. Last year each
student received a Bioinformatics Live-CD with all
programs used during the course, but it was not
possible for them to easily save their work. The
course team came therefore up with a new idea
that resulted on an “Bioinformatics workbench
on a USB memory stick”, eBioUSB. Each student
received one USB-stick to use during the course
and bring back home for continuous work. By us-

Saidimu Apale filming the lectures

The course participants at ILRI, Kenya, May 9, 2008.

�	 EMBnet.news	 Volume 14 Nr. 2
ing an USB the students were also able to save all
their work directly on the stick.

The eBioUSB stick is based on a Linux environ-
ment: the African UBUNTU system. The USB solu-
tion has the advantage that it can be used in
any computer without changing any settings. It
has a complete Desktop environment (e.g. office
package, text editor and mail client).

The programs that were necessary for the course
and installed on eBioUSB were:

ClustalW
ClustalX
NCBI BLAST
NCBI Tools
EMBOSS
wEMBOSS
Staden
PHYLIP
Artemis
Artemis comparison Tool
JalView
BioPerl

We have created 2 different USB sticks: one that
can be ran on old computers and the one used
for the course can be used on newer machines
resulting on a higher speed system.

Future improvements of the eBioUSB include in-
corporating the SwissProt database for running
most common analysis locally.

The “BioMacKit” a Bioinformatics Portable
Teaching Kit that was created last year was used
this time to access a complete mirror of vari-
ous programs and databases used during the
course (More information: EMBnet.news, Vol 13 Nr
2:7, 2007).

The course evaluation resulted on an average 4.9
of maximum 5 points encouraging the teachers
to organize a new course next year.

Student comments of the course:

“Interesting and highly applicable to our work
though not so easy for beginners”

•
•
•
•
•
•
•
•
•
•
•
•

“I enjoy working with the emboss software be-
cause it has many programs and each has a
manual, thus quite user friendly”

“I look forward to applying the knowledge I have
acquired in the training in my research work and
to assist others”

“The USB stick enables me to reproduce exactly
what I have learned”

“I learned a lot about databases that were avail-
able to me and programs I could use to analyze
protein and DNA sequences”

The eBioUSB used for the course.

Volume 14 Nr. 2	 EMBnet.news	 �

Introducing the African Society for
Bioinformatics and Computational
Biology (ASBCB; http://www.asbcb.
org)

Daniel Masiga

(icipe, Kenya)

The ASBCB was established during a workshop
at the South African National Bioinformatics
Institute (SANBI) in 2004. The society has a vision
to promote the exchange of ideas, infrastruc-
ture and resources in the fields of bioinformatics
and computational biology and facilitate the
interaction and collaboration among scientists
and educators and to measurably advance the
awareness and understanding of the science
of bioinformatics and computational biology in
Africa. The society represents the bioinformatics
and computational biology community in Africa
and aims to be the most respected and reliable
international non-profit organization representing
this community.

The mission of the society is to be a scholarly
body dedicated to advancing, developing and
promoting bioinformatics and computational bi-
ology in Africa, while serving a global member-
ship, by impacting government and scientific
policies, providing high quality publications and
meetings, and through distribution of valuable
information about training, education, employ-
ment and relevant news from related fields.

In seeking to have an impact in more than 50
countries with at least 4 major international lan-
guages and thousands of others, with a con-
siderably varied educational and development
landscape, we are confronted with a huge task.
Yet in order to develop the application of bioin-
formatics in Africa we must work in collaboration
with others who have walked this road before,

or are on the same path. As of May 16, 2008,
ASBCB had 268 members from 36 countries
(Argentina, Burkina Faso, Cameroon, Canada,
Cote d’Ivoire, Cuba, Democratic Republic of
Congo, Egypt, Ethiopia, Finland, France, Gabon,
Gambia, Germany, Ghana, India, Iran, Kenya,
Malaysia, Mali, Mauritania, Mauritius, Nepal,
Nigeria, Rwanda, Scotland, Singapore, South
Africa, Sudan, Switzerland, Tanzania, Tunisia,
Uganda, United Kingdom, United States).

As a society, we know that building educational
and research capacity among our members is
crucial to meeting our objectives. We therefore
invite collaboration in addressing our objectives,
which are:

identify, establish and promote opportunities
for networking;

facilitate access to bioinformatics and com-
putational biology infrastructure;

encourage and develop bioinformatics and
computational biology nodes;

increase awareness and promote the use of
bioinformatics and computational biology;

promote bioinformatics and computational
biology education.

In May 2007, the ASBCB held its first conference,
“Bioinformatics of pathogens and disease vectors”
in Nairobi, co-hosted by the International Centre
of Insect Physiology and Ecology (icipe) together
with the International Livestock Research Institute
(ILRI) and the Centre National de la Recherche
Scientifique (CNRS, LIRMM Montpellier, France).
One of the outcomes of this conference has
been the growth of a very vibrant students com-
munity, the regional students group of the ISCB
student council. From among these, we hope
will emerge a core of African scientists who will
help to drive the translation of genome resources
using bioinformatics applications to improve the
wellbeing of Africa’s people in various spheres.

The society was formed during a bioinformat-
ics workshop supported by the WHO Special
Programme for Research and Training in Tropical
Diseases (TDR). They have since held other

1.

2.

3.

4.

5.

�	 EMBnet.news	 Volume 14 Nr. 2
courses covering pathogens and their vectors
(principally malaria and sleeping sickness) in Mali
(MRTC) and South Africa (SANBI). We appreci-
ate this support and look forward to continuing
to partner with them. We also understand that
we need strategies for long-term and sustained
generation of scientists with competence in bio-
informatics in Africa, through education and re-
search. To achieve this, strong partnerships at
different levels will need to be established. We
look forward to future collaborations.

The Governing Council of ASBCB (since June 2007): President:
Daniel Masiga (icipe, Kenya); Vice-President: Ezekiel Adebiyi
(Covenant University, Nigeria); Secretary: Nicky Mulder (Uni-
versity of Cape Town, South Africa); Treasurer: Alia Benkahla
(Pasteur Institute of Tunis, Tunisia); Committee Members:
Jaco de Ridder (University of Pretoria, South Africa), Seydou
Doumbia (University of Bamako, Mali); and the Newsletter
Editor: Beatrice Kilel (Washington DC, USA).

ChemGPS-NPweb
A tool tuned for navigation in
biologically relevant chemical space

Josefin Rosén1, Anders Lövgren2, Johan Gott-
fries3, Anders Backlund4

1 Div. of Pharmacognosy, Dept. of Medicinal
Chemistry, BMC Box 574, S-751 23 Uppsala,
Sweden
2 The IT-/Computing Dept., BMC Box 570, S-751
23 Uppsala, Sweden
3 Pharmnovo Inc., Sahlgrenska Science Park, S-
413 46 Gothenburg, Sweden
4 Div. of Pharmacognosy, Dept. of Medicinal
Chemistry, BMC Box 574, S-751 23 Uppsala,
Sweden

Introduction
The World Wide Web has become a central
source for information, education, tools, and
services that make life easier for medicinal
chemists and drug discoverers. Internet technol-
ogy offers an exceptional possibility to develop
public tools. We have developed a web-based
public tool ChemGPS-NPweb,(http://chemgps.
bmc.uu.se/), for comprehensive chemical
space navigation and exploration in terms of
global mapping on to a consistent 8-dimension-
al map of structural characteristics. ChemGPS-
NP [1, 2] is a principal component analysis (PCA)
based global space map or a chemical global
positioning system [3]. Compounds of interest or
under study are positioned onto this map using
interpolation in terms of PCA score prediction.
The properties of the compounds together with
trends and groupings can easily be interpreted
from the resulting projections. In this article we
review design, features, and proposed fields of
application of ChemGPS-NPweb.

Volume 14 Nr. 2	 EMBnet.news	 �

Technical details

General
ChemGPS-NPweb includes a number of different
programs and libraries that interact with each
other according to the traditional UNIX-model.
Each element performs a well defined task and
together they solve a more advanced problem.

The system includes three main elements:
DragonX [4], for calculation of molecular descrip-
tors, Simca-QP [5], for multivariate predictions,
and the web interface (Batchelor). Further more
a batch queue manager is used. This allows jobs
with long run times to be submitted to the web
server and scheduled for later execution by its
batch queue. The programs exchange informa-
tion with the web interface by storing information
in the file system, which acts as the database

Job flow
When the job queue starts a job, the following
things occur: the uploaded SMILES [6] strings
are processed by DragonX, and the obtained
data are then transformed by a Perl script that
organizes the values of the 35 descriptors used
by the model. These transformed results are used
as indata to cgpsclt (client) that connects to
cgpsd (server) to start the multivariate prediction.
Subsequently Simca-QP performs the prediction
via libchemgps and cgpsd sends the result back
to cgpsclt, which stores the result in the database.
If cgpsd (the server) is not available the predic-
tion will instead be performed locally by cgpsstd
(standalone program). Figure 1 describes how
the different elements interact.

Figure 1. Flowchart describing the interaction between the
different elements of ChemGPS-NPweb.

Optimizations
The extra step with client/server (cgpsclt/cgpsd)
was incorporated to avoid having to load the
project (reference set) for each job. As an ad-
ditional benefit it also enables predictions to be
performed by one or more computers on the
network.

	 All elements (DragonX, Simca-QP, and
cgpsd) are multithreaded, which becomes more
and more important as the number of cores
(CPUs) will increase in the future.

The web interface
The web interface (Batchelor) enables the up-
load of data (SMILES) and to obtain the results
from the runs. The job queue can be filtered and
sorted according to different criteria. Uploaded
data and results are personal and can only be
reached from the same computer as the job
was initiated from. The information presented to
the user is in part obtained from the database
(results and statistics), or directly from the job
queue (job status).

System information
The entire process runs at present on one single
computer, a 64 bit 2 x Quad Core Xeon operat-
ing at 1.6 GHz with 4 GB RAM, and featuring a
GNU/Linux operating system.

How to use ChemGPS-NPweb

The simple instruction for using ChemGPS-NPweb
is as follows:

a correct SMILES-file [6] with a maximum of 500
compounds (or 1024 kB) is uploaded and sub-
mitted using the buttons ‘Browse’… and ‘Send
File’ (figure 2). Any IDs in the file should be placed
after (to the right of) the SMILES string. Alternatively
the SMILES can be pasted in the ‘Process data’
drop box and submitted by clicking ‘Send Data’.

The resulting ChemGPS-NP 8D coordinates are
obtained through ‘View results’ in the left menu.
Users (submitters) can monitor the state of their
submitted jobs (pending, running or finished)
and later download the result from the queue
view (figure 3). The coordinates (figure 4) can
then be plotted using preferred software. Here
we have used Grapher 2.0 distributed together

�	 EMBnet.news	 Volume 14 Nr. 2

Final remarksS
The drug discovery process is today held back
by increasing costs and high attrition-rates, with
an overall decrease in the number of annually
registered new chemical entities. Considering
the immensity of chemical space, which is es-
timated to exceed 1060 possible compounds
when only small carbon-based compounds are
considered [7], it is obvious that the process of
compound selection and prioritization is cru-
cial. An efficient selection process would give
a higher probability of obtaining a lead com-
pound. ChemGPS-NP provides a framework for
making compound comparison and selection
more efficient, thereby increasing probability of

Figure 4. Resulting coordinates for submitted compounds
retrieved through direct access.

with MacOS X (figure 5). From the plot it is evident
that the two compounds indicated by the circle
have very similar physical chemical properties
as can be confirmed by the chemical structures
displayed in figure 6.

Additionally post computational statistics are pre-
pared based on results from each of the succes-
sive computational steps, and can be viewed by
clicking ‘Statistics’ in the left menu (figure 2).

Figure 2. User upload interface of ChemGPS-NPweb.

Figure 3. Queue feedback interface, allowing simple error
tracing features as well as access to retrieved data both di-
rectly and as a downloadable file.

Volume 14 Nr. 2	 EMBnet.news	 �
several pieces of commercial software that con-
nect via scripts handling input, queue and out-
put of data files. The output files can be piped
into other software for post-processing, plotting
and visualization.

Acknowledgements

Instrumental at initial stages in implementing the
ChemGPS-NPweb were Thierry Kogej at AstraZeneca
R&D, Mölndal, and Gustavo Gonzales-Wall and
Nils-Einar Eriksson at the IT-/Computing Dept. at
BMC. The authors are grateful for software sup-
port from UMETRICS and TALETE.

References
Larsson J, Gottfries J, Bohlin L & Backlund A
(2005) Expanding the ChemGPS chemical
space with natural products. J Nat Prod 68:
985-991.
Larsson J, Gottfries J, Muresan S & Backlund A
(2007) ChemGPS-NP: tuned for navigation in
biologically relevant chemical space. J Nat
Prod 70: 789-794.
Oprea T I & Gottfries J (2001) Chemography:
the art of navigating in chemical space. J
Comb Chem 3: 157-166.
Talete srl, DragonX (Software for Molecular
Descriptor Calculations). Linux version - 2007
- http://www.talete.mi.it/. Accessed May 28,
2008.
SIMCA-QP software, Umetrics AB, Umeå,
Sweden. http://www.umetrics.com/ . Accessed
May 28, 2008.
Weininger D (1988) SMILES, a chemical
language and infromations system. 1.
Introduction to methodology and encoding
rules. J Chem Inf Comput Sci 28: 31-36.
Bohacek R S, McMartin C & Guida W C (1996)
The art and practice of structure-based drug
design: a molecular modeling perspective.
Med Res Rev 16: 3-50.
Altschul S F, Gish W, Miller W, Myers E W &
Lipman D J (1990) Basic local alignment
search tool. J Mol Biol 215: 403-410.

1.

2.

3.

4.

5.

6.

7.

8.

hit generation in the search for novel bioactive
molecules. The benefits of ChemGPS-NP are, in
one way, comparable to the possibilities opened
in molecular biology by rigorous application of
the BLAST algorithms [8]. These allow, for example
through web-interfaces, the research commu-
nity to easily compare sections of nucleotide or
amino-acid sequences for homology searching,
identifying genes, or preparing datasets for phy-
logenetic analyses, all in huge datasets.

	 In summary we have developed an
internet tool for chemical space navigation.

ChemGPS-NPweb can assist in for instance com-
pound selection and prioritization; property de-
scription and interpretation; clustering overviews;
as well as comparison and characterization of
large datasets. ChemGPS-NPweb so far includes

Figure 5. Retrieved data plotted using Grapher 2.0, showing
first three of eight dimensions of chemical space as defined
by ChemGPS-NP. From the plot it is obvious that two com-
pounds indicated by the circle have very similar physical
chemical properties.

Figure 6. Molecular structures (drawn with ChemDraw Ultra
11.0.1) of the two apparently similar compounds encircled
in figure 5.

10	 EMBnet.news	 Volume 14 Nr. 2

Bovine Trace
To the traceability of beef

Claudia P. Mendoza1 and Allan Orozco2

1 Agricultural Engineering, Bioinformatics. EARTH
University, Las Mercedes de Guácimo, Limón,
Costa Rica. www.earth.ac.cr

2 Visiting Professor, EMBnet Costa Rica.

Accessibility to US and EU markets is invaluable
for any beef industry, however, in order to enter
these markets, bovine producers must provide
a mechanism to guarantee traceability of their
products. We have analysed the problem to pro-
pose a method and accompanying technology
for the traceability of beef.

Building on standard technologies of the bovine
industry we have developed a system which
generates special codes that allow consumers
to trace the origin of bovine products through all
the steps back to the producer using either bar
code technology (EAN.UCC-13/128) or manual
input.

Introduction

The relevance of US and EU markets for the econ-
omy of bovine industry can not be understated.
However, access to these markets requires a guar-
antee of traceability of bovine products through
all the chain from production through delivery to
consumer, a requirement that is a major obsta-
cle for many producers in the world. Recognizing
that this poses a serious economical disadvan-
tage for many producers we set out to develop a
tracing system that can address their needs.

In order to build our system we have had to ana-
lyse not only the technology available but also
the impact of legal regulations on the process

and the complex interactions across the long
bovine delivery chain. Building on theoretical
basis and field experiences we used the Unified
Software Development Process to build an UML
conceptual model (see Fig. 1) leading to an ob-
ject oriented computational model that was it-
eratively refined running simulations with sample
data until it closely matched the real biological
system.

Features
The requested features of a beef traceability
system involve the ability to use user supplied in-
formation to trace (investigate and verify) such
varied issues as cattle origins (and theft), sanitary
control, verifiable cattle inventory or follow up of
all steps in the supply chain. This additional infor-
mation provides better guarantees for consum-
ers, producers and food processors, delivering
significant value to all participants in the food
chain.

Figure 1. UML Conceptual Model.

Figure 2. Animal registration.

Volume 14 Nr. 2	 EMBnet.news	 11

records, and allow consumers to use the bar and
numeric codes in the product label to access
information about the quality and characteristics
of a product tracing it through any step in the
production-delivery-commercialization chain.

Conclusion
Guaranteeing beef traceability is a must have
for the bovine industry worldwide. Providing this
service requires a complex infrastructure that in-
volves all players in the process, from the original
producer to the end consumer and has deep
legal and technological implications. We have
developed a system to support modern tracing
capabilities for the bovine industry and consum-
ers. This system has been developed with rele-
vant involvement from industry stakeholders and
though closed source, it is the result of academic
research to establish the basis for traceability of
meat products at an industrial level.

Acknowledgements

This work is the result of a 2007 graduation project
in Agricultural Engineering (Bioinformatics) at
EARTH University that has received a honours
degree and counted with assistance from two
Nobel Prize Winners. (Dr. Yunus, Dr. Arias).

References
Grupo europeo de expertos en productos cárni-
cos (2002). EMEG. GS1. The Global language of
Business. Aplicación de estándares EAN/UCC.
2002: 27-30.

Sandoval, Alejandro. Trazabilidad en Estados
Unidos y Europa. FRIMA, SA.

Jacobson, I. (2000). El proceso unificado de
desarrollo software. Booch, G. Madrid. Pearson
Educación. 207-253.

1.

2.

3.

Figure 5. Molecular mark and genomic identification.

In order to support this traceability we have de-
signed a set of specialized interfaces, each
aimed at a different player in the chain, who
must provide the relevant data for the system
at his/her own stage. These include interfaces
for animal identification using genetic, genom-
ic and nanotechnology (Scanning Tunneling
Microscopy/Atomic Force Microscopy) markers,
slaughter registration, sanitary control, etc. down
to the final generation of sticker labels for sell-
ers and trace queries by consumers (Figs. 2, 3,
4 and 5).

The interfaces allow producers and intermedi-
ate players to enter useful and legally required
information, as well as to use this for their own

 Figure 4. Commercial Sticker.

Figure 3. Registration of Slaughter.

12	 EMBnet.news	 Volume 14 Nr. 2
with unique characteristics resulting either from
persistent selection for desired attributes (e.g.
size, morphology, coat colour and behaviour) or
from genetic drift/inbreeding (e.g. susceptibility
to specific diseases). Not a single other organ-
ism approaches the level of phenotypic variation
that is observed amongst dog breeds [1, 2, 3].
This diversity includes breed-specific susceptibil-
ity to disease, many of which are the equivalents
of common human disorders. Exposed to the
same “westernized” environment as their owners,
dogs suffer from the same range of diseases that
plague our developed societies [4]. Over 200
genetic diseases have been reported including
cancer, diabetes, inflammatory diseases, heart
disease and epilepsy.

In addition, it has been recently demonstrated
that the demographic history of dog breeds
results in a number of features that make them
uniquely suited for the detection of susceptibility
genes [5]. These include (i) the fact that the ge-
netic complexity of inherited diseases is bound
to be considerably reduced within dog breeds
when compared to humans, and (ii) the fact that
– as a result of long-range linkage disequilibrium
– the number of SNP markers needed to effec-
tively perform whole genome scans is reduced
by an order of magnitude from hundreds to tens
of thousands of markers. A two-stage approach,
combining within-breed and subsequent be-
tween-breed analyses, has recently been pro-
posed for very precise localization of genetic risk
factors [6].

As a result of these features, the dog has at-
tracted a lot of attention amongst the human
genetics community. The dog genome was
the 4th mammalian genome to be completely
sequenced by the NIH. Millions of SNP markers
have been discovered [5] and utilized to assem-
ble highly informative genome wide SNP panels
that can be genotyped cost-effectively using
high throughput platforms.

Proof of principle

To demonstrate the value of the dog system, Dr.
Lindblad-Toh and Dr. Andersson [7] have per-
formed pilot experiments targeting two men-
delian traits, white spotting (sw), inherited in a
semi-dominant manner in boxers and bull ter-

LUPA: Unravelling the molecular basis
of common complex human disorders
using the dog as a model system

Anne-Sophie Lequarré

Coordinator of the LUPA
project, Animal Genomics Unit,
GIGA-Research, Université de
Liège, Belgium

Understanding the pathogenic mechanisms of
common human diseases - including cancer,
cardiovascular, inflammatory and allergic dis-
orders - is an important objective of ongoing
genomics initiatives. Gaining molecular insights
into the cellular processes disturbed in these
pathologies is a direct path towards improved
prevention, diagnosis and treatment. As genetic
predisposition is a major risk factor for most com-
mon diseases, identifying predisposing gene
variants is a promising strategy to achieve these
objectives.

Despite major efforts and a few successes, iden-
tifying susceptibility genes for common diseases
in human has so far proven to be difficult. This
is likely due to the complexity of the underlying
causes, including genetic and environmental
heterogeneity, gene-by-gene and gene-by-envi-
ronment interactions. Very large disease cohorts
genotyped for hundreds of thousands of SNP
markers are likely to be required to achieve satis-
factory power. In order to accelerate the discov-
ery pace, studies targeting human populations
are advantageously complemented by studies
of more tractable animal models of human dis-
ease. Until recently, the only widely used model
organisms for that purpose were the mouse and
rat but the dog has a number of unique features
that have the potential to make it a superior ge-
netic system to study the molecular basis of dis-
ease.

The dog: an ideal model system
to unravel the molecular basis of
common diseases

The dog population is composed of ~ 400 pure-
bred breeds. Each of these is a genetic isolate

Volume 14 Nr. 2	 EMBnet.news	 13

riers, and ridging, a characteristic dorsal band
of abnormally oriented hair follicles from which
the Rhodesian ridgeback takes its name. In a
very short time and using a quite limited number
of dogs they identified the gene for white coat
color (MITF) then using the two-staged “between-
breed” approach they positioned the mutation
in a region immediately upstream of the tran-
scriptional start site of the melanocyte-specific
(M) promoter of MITF. They also identified the pre-
cise chromosomal localization and a candidate
mutation for dermoid sinus. The genetic analysis
of the defect revealed a 133-kb duplication that
includes genes coding for three fibroblast growth
factors (FGFs), suggesting that an increased gene
dosage of one or more of these paracrine sig-
nalling molecules causes the dorsal hair ridge.

The LUPA project

Named after the legendary wolf who nourished
the founders of Rome, the LUPA Consortium is a
coordinated European effort taking advantage
of this extraordinary genetic model system. The
project funded by the 7th FP of the European
Commission started last January. The Consortium
blends highly qualified clinicians with all European
research teams specialized in dog genetics.
Twenty veterinary clinics in 12 European coun-
tries are working together to collect DNA samples
from large cohorts of dogs suffering from a range
of thoroughly defined diseases of relevance to
human health, including cancers, inflamma-
tory disorders, heart diseases and epilepsies. The
European dimension and the establishment of
protocols for standardized, high quality clinical
characterization will allow the network to establish
sample collections unique in the world. Once
the cohorts are built, DNA samples are sent to
a centralized, high-throughput SNP genotyp-
ing facility. The SNP genotypes stored in central
database are made available to participating

LUPA - logo

collaborating centres, who analyse the data
with the support of dedicated statistical genet-
ics platforms. Following genome wide associa-
tion and fine-mapping the candidate genes will
be followed up at the molecular level by expert
animal and human genomics centres.

LUPA is expected to be very successful in provid-
ing insights into the pathogenesis of common hu-
man diseases – its primary goal. In addition, the
project has the potential to have a major impact
on the future of veterinary medicine in Europe.
It will give a new impulse to veterinary clinicians
across Europe towards the potentials offered by
genomics in diagnosis and treatment.

Web site: http://www.eurolupa.org/

Information: as.lequarre@ulg.ac.be

References:
Neff MW, Rine J. A fetching model organism.
Cell. 2006.124(2):229-31. Review.
Ostrander EA, Wayne RK. The canine genome.
Genome Res. 2005. (12):1706-16. Review.
Pennisi E. News Focus: genetics. The ge-
neticist’s best Friend. Science. 2007. 317
(5845):1168
Khanna C, Lindblad-Toh K, Vail D, London
C, Bergman P, Barber L, Breen M, Kitchell B,
McNeil E, Modiano JF, Niemi S, Comstock
KE, Ostrander E, Westmoreland S, Withrow S.
The dog as a cancer model. Nat Biotechnol.
2006. 24(9):1065-6.
Lindblad-Toh K et al. Genome sequence,
comparative analysis and haplotype struc-
ture of the domestic dog. Nature. 2005
438(7069):803-19.
Sutter NB, Bustamante CD, Chase K, Gray MM,
Zhao K, Zhu L, Padhukasahasram B, Karlins E,
Davis S, Jones PG, Quignon P, Johnson GS,
Parker HG, Fretwell N, Mosher DS, Lawler DF,
Satyaraj E, Nordborg M, Lark KG, Wayne RK,
Ostrander EA. A single IGF1 allele is a major
determinant of small size in dogs. Science.
2007. 316(5821):112-5.
Karlsson EK et al. Efficient mapping of
Mendelian traits in dogs through ge-
nome-wide association. Nat Genet. 2007.
39(11):1321-8.

1.

2.

3.

4.

5.

6.

7.

14	 EMBnet.news	 Volume 14 Nr. 2

ASPicDB:
A database resource for alternative
splicing analysis

Tiziana Castrignanò 1, Mattia D’Antonio1 and
Graziano Pesole2,3

1 Consorzio Interuniversitario per le Applicazioni
di Supercalcolo per Università e Ricerca,
CASPUR, Rome, Italy,

2 University of Bari, Dipartimento di Biochimica
e Biologia Molecolare, via Orabona, 4, Bari
70126, Italy

3 Istituto Tecnologie Biomediche del Consiglio
Nazionale delle Ricerche, via Amendola 122/D,
Bari 70126, Italy

Introduction

ASPicDB is a database designed to pro-
vide access to reliable annotations of the
alternative splicing (AS) pattern of human
and mouse genes and the functional an-
notation of predicted splicing isoforms.
Splice site detection and full-length transcript mod-
elling have been carried out by a genome-wide
application of the ASPic algorithm [1-3], based
on the multiple alignment of gene-related tran-
scripts (typically a Unigene cluster) to the genomic
sequences, a strategy that greatly improves pre-
diction accuracy compared to methods based
on independent and progressive alignments.
Only human and mouse genes for which at least
a RefSeq NM curated transcript and a Unigene
cluster were available were included in the da-
tabase.

ASPicDB, which is regularly updated on a monthly
basis, also includes information on tissue-specif-
ic splicing patterns of normal and cancer cells,
based on available EST sequences and their li-
brary source annotation.

Data production

A high-throughput software platform, HTC for
ASPic, has been developed to produce large-
scale alternative splicing analysis and transcript
isoform data. It integrates computational inten-
sive algorithms developed previously [1-3] with
suitable web services and databases. The sys-
tem has been optimized programming multi-
threaded powerful Java client for data preproc-
essing and several distributed application servers
for intensive computation. HTC for ASPic divides
the input (lists of pairs of genomic sequence
and its related Unigene cluster) into parallel tasks
and it scales linearly with the number of dedi-
cated processors. The system is also fault-toler-
ant. The web resource is available free of charge
for academic and non-profit institutions at the
site http://www.caspur.it/HTC4aspic. After
each analysis a detailed file of logs can be ac-
cessed to manage the results. Furthermore each
result can be visualized with the same graphics
used in ASPicDB to provide maps for genes, tran-
scripts, introns or exons.

A set of scripts allows us to insert new entries, up-
date the existing one (in case of modification in
genomic sequence or Unigene cluster) or de-
lete obsolete entries. The same scripts validate
the HTC for Aspic results before inserting them
into ASPicDB; when the predicted RefSeq does
not match with that provided by NCBI the entry
is discarded.

Database Content

A first version of ASPicDB, containing only human
data, has been already published [4]. Since last
publication many improvements have been im-
plemented both for database content and web
interface.

New features of the database include:
AS data for all mouse genes;
crosslinks between human and mouse AS data
for orthologous genes;
new retrieval and download facilities at the
exon level;
Blast searches against transcript and protein
isoforms collected into the database.

•
•

•

•

Volume 14 Nr. 2	 EMBnet.news	 15

Table 1 reports some statistics on the data con-
tained in the current version of ASPicDB (v1.2, May
2008) which currently contains splicing predic-
tions for 18,599 human genes and 16,849 mouse
genes.

Human Mouse
Genes 18,599 16,849
Transcript 278,515 103,167
Proteins 183,775 65,801
Exons 366,263 248,646
Introns 350,552 207,721
U2 294,848 192,763
U12 1,789 900
Splicing events 212,750 92,879

Table 1. ASPisDB statistics (v1.2, May 2008) for human and
mouse genes.

We estimated that over 91% of human multi-exon
genes may generate alternative isoforms and that
each gene - on average - may generate about 12
different transcripts and 11 different proteins, most
of them translated in frame with the RefSeq anno-
tated protein. The resulting 10% of “untranslated”
isoforms includes those transcripts for which a reli-
able ORF could not be annotated automatically.
ASPicDB also contains information about cancer
vs normal tissue specificity for 17 tissue types at
both gene and splice site level. After an HTC for
Aspic execution, a set of scripts evaluates the sta-
tistics of the gene expression patterns for each
tissue in both normal and cancer conditions.

Database web interface

The database has a new web interface enabling
a friendly and through exploration of the AS data.
In particular, the ASPic data can be accessed
through simple or advanced query interfaces.
The simple query form allows the user to obtain
the ASPic output for one or more genes select-
ed according to one of their HGNC, Unigene,
RefSeq, Entrez or MIM IDs, or according to a key-
word term, or to their associated Gene Ontology
(GO) IDs or textual terms belonging to the “bio-
logical process”, “molecular function” or “cellular
component” categories. The simple search form
is shown in Figure 1.

The advanced query form allows the user to
search for: 1) genes; 2) transcripts; 3) exons or
4) splice sites, fulfilling different criteria (e.g. type
of splicing event, type of donor/acceptor splice

site, etc.). Depending on this choice four sepa-
rate query forms appear.

An exon search can be performed, for exam-
ple, selecting a specific exon class (e.g. initial,
internal, terminal and/or within a length range) or
specific features of the flanking splice sites. The
advanced query form for exons is shown in Figure
2.

Enhanced query and download facilities al-
low the users to select and extract specific sets
of data related to genes, transcripts, exons and
introns fulfilling a combination of user-defined
criteria. Several tabular and graphical views of
the results are presented, providing a compre-

Figure 2: Advanced search form for exons.

Figure 1: Simple query form.

16	 EMBnet.news	 Volume 14 Nr. 2

hensive assessment of the functional implication
of alternative splicing in the gene set under in-
vestigation. In the Gene Information panel a link
between orthologs genes is also provided. A
sample output for gene TP53 is shown in Fig. 3A
and 3B.

It is also possible to retrieve set of genes or splice
sites differentially expressed in the normal or can-
cer condition in 17 tissue types using different sig-
nificance thresholds.

Finally a Blast facility allows the comparison be-
tween a user submitted sequence against the
full collection of alternative transcripts and pro-
teins collected in ASPicDB.

The Blast search can be carried out through a:
a web form interface
a dedicated web service

The web interface can be accessed by click-
ing on the “Blast” button in the left panel in the
ASPidDB home page. The Blast web service en-
ables user-developers to access to the remote
services while using their own application written
in any language, without having to know details
of the architecture and implementation of the
service. On public WSDL page the developer
can read everything on messaging in XML for the
service of interest.

A developer can blast ASPicDB, retrieve the results
and use them in a workflow for further analysis.
The WSDL descriptor for blast-ASPicDB web service
is available at (http://www.caspur.it:8080/
webservices/Blast2Aspic.jws?wsdl)

We are going to develop a set of Blast2Aspic
Web Service API to allow the user to blast in a very
simple way a huge list of query sequences.

•
•

Conclusion and future work

ASPicDB is an ongoing project and we plan
to further develop it in the next releases.
The annotation of predicted isoforms will be
further enriched by including information
on specific regulatory elements in alterna-
tive mRNA untranslated regions and the func-
tional features of the predicted protein iso-
forms (e.g. occurrence of PFAM domains,
signal peptides, transmembrane helices, etc.).
We also plan to extend the database to other
organisms for which the genome sequence and
a suitable amount of expressed sequences is
available (e.g. rat, cow, zebrafish, etc.).

References
Bonizzoni P, Rizzi R, Pesole G. ”ASPIC: a novel
method to predict the exon-intron structure of a
gene that is optimally compatible to a set of tran-
script sequences.” BMC Bioinformatics. 2005 Oct
5;6:244.

Bonizzoni P, Rizzi R, Pesole G. Computational meth-
ods for alternative splicing prediction. Brief Funct
Genomic Proteomic. 2006 Mar;5(1):46-51.

Castrignanò T, Rizzi R, Talamo IG, De Meo PD,
Anselmo A, Bonizzoni P, Pesole G. ASPIC: a web
resource for alternative splicing prediction and
transcript isoforms characterization. Nucleic Acids
Res. 2006 Jul 1;34(Web Server issue):W440-3.

Castrignanò T, D’Antonio M, Anselmo A, Carrabino
D, D’Onorio DM, D’Erchia A, Licciulli F, Mangiulli
M, Mignone F, Pavesi G, Picardi E, Riva A, Rizzi R,
Bonizzoni P, Pesole G. ASPicDB: A database resource
for alternative splicing analysis. Bioinformatics.
2008 Apr 3;

1.

2.

3.

4.

Figure 3A: Predicted gene structure.

Figure 3B: Predicted transcripts for gene TP53.

Volume 14 Nr. 2	 EMBnet.news	 17

The Grid in practice
José R. Valverde

EMBnet/CNB, CNB/CSIC,
C/Darwin, 3, Madrid 28049

Introduction

“To ask may bring a moment’s shame,

but not to ask is to remain in ignorance,

and so condemn oneself to lifelong shame.”

(The Code of Scolarship)

Distributed programming taken to the extreme
results in Grid computing, where we transcend
the local computer center (or computer farm)
to access shared resources in other locations all
over the World.

Grid computing must solve a number of addi-
tional challenges resulting from the wide geo-
graphic distribution of the resources used and
from its shared nature (they belong to different
owners, unknown to us, whose interests may po-
tentially conflict with ours). In this tutorial we will
see some of the basic problems and understand
how we work currently on the Grid.

Nowadays most of the work performed on the
Grid is managed by batch processing, a tech-
nology that is overly familiar in High Performance
Computing centres, as it has been used since
the very first times of computing. We will have a
chance to see how this work procedures have
been taken to the Grid and the practical conse-
quences derived.

Given the characteristics of batch processing,
we do not need to change our programs to
make use of the Grid: we simply use the same
executables we already have. As a conse-
quence, in this tutorial you will not be required
to know any programming language, and as a
result, we can say that to use the Grid it is not

necessary to know about programming (al-
though it helps if you want to make complex
tasks); it is enough to have the executables.
We are going to use EGEE for out examples. EGEE
is the European production Grid. To use it we
need special permissions, as we have already
described. In the next sections we will describe
the basic working procedures with very simple
examples. Now, if you are curious to learn how
you can use thousands or tens of thousands of
computers to run your programs easily, just fol-
low on.

The first steps

A ducks legs, though short, cannot be length-
ened without discomfort to the duck;

A crane’s legs, though long, cannot be short-
ened without discomfort to the crane.

(Chuang-Tzu)

Connecting to the UI
Our first step is obvious: we need to connect with
a “front end” (also known as User Interface node,
UI) that will allow us to harness and control the
Grid. We will normally use ssh to connect so that
all our subsequent work is securely protected,
and will access the UI using our username and
password as provided by the UI system admin-
istrator.

It is relevant to note here that the UI is a full UNIX
(Linux actually) system, which in addition, is con-
nected to the Grid. In other words, we can carry
out any usual task we normally perform on LINUX/
UNIX machines (like compiling our program, read
e-mail, edit files or play 3D team games under
X).

Transferring our certificate
The UI is just a gateway to the Grid, a machine
that knows how to issue commands to the Grid,
and that can be set up by anybody. If we do
not want the Grid abused, we simply cannot trust
any UI (or anybody with access to an UI) totally.
We might implement verification mechanisms
for the UI, but that will not solve the problem of
identifying the people that uses the UI (and the
Grid through it) as its owner may grant access to
the UI to anybody he or she wishes.

18	 EMBnet.news	 Volume 14 Nr. 2

In order to actually use the Grid we need a Grid
identity, separate from the one we have on the
UI. The identity on the UI is our username as pro-
vided by the UI owner, but our identity on the Grid
is a personal “token”, like an ID or credit card or
passport, issued by a trusted authority and ac-
cepted by the Grid administrators. This personal
token is not a physical card but an electronic
“certificate”.

As we have said, we must validate this certificate
with a trusted authority, known as Certificate
Authority, CA. There are many CAs out there (like
Verisign or many national authorities): in order to
learn which CA should we use our first step will
usually be to go to the web pages of the Grid
and find out which CA is trusted in our area. Once
we know, we will generate a personal certifi-
cate including our personal identification details.
Obviously we could be liars, that is why we are
forced to validate it with the CA: the process will
usually involve sending our personal certificate
to the CA asking them to validate it; someone
from the CA will get in contact personally with us
to verify our claimed identity and after verifying
that we really are the same person described
in our personal certificate, the CA will sign it to
stamp its validation certificate. It is this validated,
signed certificate we got from the CA (and not
the original CA we generated ourselves) that we
must then send to the Grid administrator asking
them to grant us access to the Grid. Once the
administrator adds our signed certificate to the
list of valid users, we can start using it to access
the Grid.

To better understand the process, we can draw
a parallel with accessing a foreign country: to do
this we need a visa, and to get it we will usually
start by finding the location of the offices were
we can request a passport. To get the passport
we first fill in a form with our data and submit it to
a local authority which is trusted by the foreign
country we want to visit, usually the local police.
The local police/authority will take our form but
will not issue a passport just on the data we pro-
vided: they will first verify the validity of the identi-
fication details we provided, and that they really
belong to us. Once an approved officer has veri-
fied we really match the details in the form, we
can get the passport. A passport is just a copy
of the data we ourselves filled in in the form, in

a nice booklet, and stamped with the local au-
thority stamp and signature, just like the signed
certificate we get from a CA is a copy of the
one we generated by filling in our details signed
by the CA; as such it is good enough to identify
ourselves to anybody who trusts the issuer, but in
many instances is not enough to grant us access
to any country, it is just a valid proof of identity,
nothing more. Once we have our valid passport
issued by a trusted authority, we still need to get a
visa: we simply produce our passport to the ap-
propriate authority for the country we want to visit
(or to the administrator of the Grid VO we want
to use) and explain what do we want the visa for
(work, tourism, fun, ...) and if they see it fit, they
will grant access to visit the country (use the Grid
VO) for the owner of the passport (of the personal
certificate).

So, here we are, we have a valid certificate,
signed by an approved CA, and accepted by
the Grid administrator of the VO we want to use.
Separately we got access to a UI node with in-
dependent user name and password. We must
identify ourselves to the Grid from the UI, hence
we must copy our valid, signed certificate to the
UI. We only need to do this once. Once we have
copied our certificate to the UI we can leave it
there for future use (until it expires and we need
to copy a new one). Obviously, if we leave it on
the UI, it should be protected somehow as the
UI administrator could otherwise impersonate us,
that is why the certificate should be protected by
a good, long pass phrase.

We can use any standard method to copy the
certificate to the UI (scp, ftp...), we just need to
remember that

first we must generate a special directory
named “.globus” in our home

the certificate must be stored within this di-
rectory “~/.globus”

the certificate is composed of two files, and
we must transfer both of them:

	 1. usercert.pem
	 2. userkey.pem

We can verify that the certificate has been cor-
rectly transferred using the command grid-

1.

2.

3.

Volume 14 Nr. 2	 EMBnet.news	 19
cert-info. If the certificate is correctly installed
in the appropriate subdirectory ~/.globus then
we will see something similar to this:

grid-cert-info
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 795 (0x31b)
 Signature Algorithm: 		
		 md5WithRSAEncryption
 Issuer: C=ES, O=DATAGRID-ES, 	
		 CN=DATAGRID-ES CA
 Validity
 Not Before: Mar 16 12:31:36 	
		 2006 GMT
 Not After : Mar 16 12:31:36 	
		 2007 GMT
 Subject: C=ES, O=DATAGRID-ES, 	
		 O=CNB, CN=Jose Ramon 	
		 Valverde Carrillo
 Subject Public Key Info:
 Public Key Algorithm:
rsaEncryption
...

As you can see the certificate has validity start
and termination dates (just like a passport) and
therefore must be renewed periodically.

Once more, let us not forget that the UI is a full
LINUX system, with multiuser support and so on...
this is to say, if we do not take care, other users
might abuse our certificate: we should protect
our certificate using a pass phrase that is long
enough and difficult to remember. It won’t be a
serious hassle when we later want to use the Grid
and will dramatically increase our security.

Activate the Grid
The correct term is creating a “proxy certificate”
to work on the Grid (i. e. actually a new tempo-
rary certificate is created from ours, with a validity
much, much shorter). In practice, we may think
of what we are about to do next simply as a way
to start a session with a limited duration.

The command to use is voms-proxy-init.

voms-proxy-init
Your identity: /C=ES/O=DATAGRID-ES/	
	 O=CNB/CN=Jose Ramon Valverde 	
	 Carrillo
Enter GRID pass phrase for this 	

	 identity: enter pass phrase (not 	
	 shown)
Creating proxy
................... Done
Your proxy is valid until: Sat May 6
06:37:52 2006

This command will look into the directory named
‘.globus’ in our home directory for a valid certifi-
cate, and if found will assume this is the one we
want to use by default to open a new working
session on the Grid.

As we can see this command displays our iden-
tity (which is stored within our certificate), and
hence we do not need to specify a username
to open our session on the Grid: we will work un-
der the identity stored in the certificate. Just after
that it prompts us for a pass phrase. This is the
long sentence we have used to protect our cer-
tificate, and as any other password, it will not be
shown while we type it.

Additionally, we can see that once we have
typed in a valid pass phrase, the command
states a validity period for our “proxy” (and hence
for our work session). Usually this period will be
12 hours, but we may request longer or shorter
periods when invoking the command (see man
voms-proxy-init).

The validity period of the “proxy” is relevant: all
commands we issue to the Grid afterwards will
be associated with it (to verify we are authorized
to issue them), thus the Grid will only accept our
commands as long as the “proxy” associated to
them is valid. When the proxy expires, our work
session will expire as well, and it will not be pos-
sible to work on the Grid any longer. Our works will
have run out of oxygen and die if they have not
finished yet. Therefore, we want the validity of our
proxy to last long enough. On the other hand,
once we have activated a session (a proxy) it will
be tied to our account on the UI for all its dura-
tion, and anybody logged in on our account will
be able to use the Grid. Normally that will be only
us, but since the security of a UNIX/LINUX pass-
word is usually lower than that of the pass phrase
needed to access the Grid (if we chose a good,
long one), the chances of someone breaking in
on our account (even if low) make it desirable to
have a proxy that does not last longer than nec-

20	 EMBnet.news	 Volume 14 Nr. 2
essary (so that should a intruder gain access to
our account on the UI, s/he can not use the Grid -
possibly for malicious purposes- disguised as us).

So, in summary, how long should a proxy be
valid? A basic rule of thumb, a proxy should be
valid for as long as we estimate our work will
need to complete. This would imply we need to
know in advance how long it will take, and as we
all know, most times there is no way to know in
advance (actually, in general there is no way to
know in advance when a job will complete on
the Grid). This is not that bad as it seems: we can
issue new proxies to extend the session (or rather
overlap sessions) as needed, hence it is enough
to submit a job, and then monitor it periodically
before the current proxy/session expires to see if
it has finished, and if it has not, then start a new
session with the same voms-proxy-init com-
mand.

Once we have activated the work session on the
Grid we can submit as many jobs as we need on
any VO where we have been accepted.

Verifying the Grid status
This is normally not needed (unless something
seems to be going wrong), but it is useful and
fun to have an idea of in which shape is the Grid
currently: the command lcg-infosites allows
us to gather information on the status of the ma-
chines that belong to (support) a VO. For exam-
ple, to see the status of all BIOMED components
we could use

lcg-infosites --vo biomed all

These are the related data for biomed:
(in terms of queues and CPUs)

#CPU Free Total Jobs Running 	
Waiting ComputingElement

 93 53 9
9 		 0 ce04.pic.
es:2119/jobmanager-lcgpbs-biomed
 12 8 0 0
0 polgrid1.in2p3.fr:2119/jobmanager-
lcgpbs-sdj
 7 7 0 0
0 ce00.inta.es:2119/jobmanager-
lcgpbs-biomed
...

Please, note that we use two dashes (-) before
the “vo” parameter. The listing is usually very long,
and we have cut it short here for the sake of brev-
ity.

We may as well find out which resources are ap-
propriate to run our job given a description of its
needs, and therefore can be used to actually run
it. To do this we need a file describing our job
(more details below) and the command

edg-job-list-match -vo=biomed myjob.jdl

Here “myjob.jdl” is a file that contains a descrip-
tion of the requirements for running our job. The
command will query the Grid and tell us which
resources (work nodes, storage elements, etc..)
are available to run it.

Creating a job

If you want to realize such a thing, you must be
such a person.

Once you are such a person, why worry about
such a thing?

(Yunju)

Once we have activated the session we can start
submitting jobs to the Grid. As many as we want.
From one to millions as long as our proxy is still
valid.

To submit jobs we use a method very similar to
the one that has been traditionally used to sub-
mit jobs to a supercomputer: we start by creat-
ing a file where we describe what we expect or
want the Grid to do and the characteristics of our
work, and then we send this file to the Grid for
processing.

The file that contains a description of our work is
written in a special language known as JDL (Job
Description Language).

JDL the Job Description Language
The description of our work must include at the
very least certain number of basic elements, and
possibly several additional optative elements. To
illustrate this we will work over an example:

Volume 14 Nr. 2	 EMBnet.news	 21

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “/bin/sh”;
StdOutput = “output.txt”;
StdError = “error.txt”;
InputSandbox = { “job.sh”, 		
	 “executable”, “data”, 		
	 “configuration” } ;
OutputSandbox = { “output.txt”, 	
	 “error.txt”, “results” };
RetryCount = 7;
Arguments = “job.sh -i data -o 	
	 results”;
Environments = { “PATH=.:$PATH”, 	
	 “INSTALLDIR=.” };
Requirements = RegExp(“cnb.uam.es”, 	
	 other.GlueCEUniqueId);
Rank = 1000 * (other.		
	 GlueCEInfoTotalCPUs -
 other.GlueCEStateWaitingJobs)
 / other.GlueCEInfoTotalCPUs;

While not exhaustive, this example allows us to
see the most common options (and some that
are not so common):

The first two directives (Type and JobType)
identify this as a normal job

VirtualOrganisation (note the ‘s’) is op-
tional and states which VO will be used to
process the job. If none is stated on the file we
can specify one on the command line.

Executable (needed) specifies the name
of the program to be executed. This program
must be available on the destination systems
where is will be run. It is possible that our pro-
grams are already installed (e.g. system com-
mands or common commands to all systems
in a given VO) or that they are not, in which
case the executable must be copied to the
remote machine in order to be executed (see
below)

StdOutput (optional) and StdError (op-
tional). Our program will be run on a remote,
unknown machine somewhere in the World,
totally independent from us, and so we will not
be able to interact with it. These parameters al-
low us to redirect its standard output and error
messages to the specified files in the remote
machine (or to discard them if not specified).

•

•

•

•

InputSandbox (optional): the concept of
sandbox is not exclusive of the Grid. A sand-
box (like the ones used by kids playing on the
kindergarten) is a safe space where we can
merrily do anything we want in the confidence
that we can do no harm (neither to ourselves
nor to the system). Our job will be run on the
remote machine in a “secured” environment
to avoid users harming the remote systems
of others. In order to run our job, this secured
environment must contain all the tools and
toys needed for it, and this is what we spec-
ify here: InputSandbox refers to all the files
needed by our job to be run, and hence to
build a complete sandbox for it on the remote
executing system. When we submit the job
description, the Grid will parse this and copy
all the files specified here to the remote sys-
tem before running the command requested.
Hence, if we want to run a program that is not
installed by default in the remote machine, we
can include the name of the executable file
here and it will be copied before being run, so
that when the Grid next tries to run whatever
we specified in “Executable” it will already
be there. Obviously if the program is already
installed, we do not need to copy it. Other files
included here are all other files needed to run
our program (data, input options, etc..).

OutputSandbox (optional) states which files
we want to recover from the Grid once the
work is finished. Our program may generate
any number of files while run, and here we
state which among all of them we want to
copy back after the jobs has completed. It
should include (if we want them) StdOutput
and StdError as well, otherwise they will be
generated but not recovered. Please, note
that there are limits to the sizes of the input and
output sandboxes and that if need to exceed
them, then we must resort to other facilities of
the Grid to circumvent them.

RetryCount (optional) states the number of
times that our job should be retried if there is
any problem while executing it on the Grid. If
zero, then it will be attempted to be run only
once.

•

•

•

22	 EMBnet.news	 Volume 14 Nr. 2

Arguments (optional) allows us to state the
arguments that we usually add to the com-
mand on the command line.

Environments (optional) is used to set envi-
ronment variables needed to be defined be-
fore running our program.

Requirements (optional) forces the Grid to
choose the resources that satisfy our condi-
tions. Usually we will simply allow the Grid to
assign them freely, but in this example we
have requested that our job will run only on
machines dependent from CNB.

Rank (optional) is a way to indicate how to
measure the “goodness” of a computer cent-
er or farm: the job will be submitted to the CE
with best score. Normally we will not use it.

Additional examples
Let us see a few more examples to better under-
stand this:

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “hostname”;
StdOutput = “where”;
OutputSandbox = “where”;

This example runs the system command “host-
name” (which tells us the name of the compu-
ter). In practice this will tell us the name of the
computer where it is run (which will not be ours).
Since hostname display the name of the com-
puter on its standard output, we need to redirect
its standard output to a file (“where”) so that we
can recover it afterwards (by specifying it in the
OutputSandbox). If we submit this job, once
completed, we can recover its output sandbox
consisting of its standard output stored in a file
named “where” and whose contents will be the
name of the computer where it was run.

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “/bin/ls”;
StdOutput = “listing”;
OutputSandbox = {“listing”};
Arguments = “-l”;

•

•

•

•

This one is similar, but this time we run the sys-
tem command ‘ls’ with the command line ar-
gument ‘-l’ to obtain a complete listing of the
directory where it is run. We will save its output on
a file named “listing” and recover it through
the output sandbox.

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “clustalw”;
StdOutput = “output”;
StdError = “error”;
InputSandbox = { “clustalw”, 		
	 “secuences”, “input” };
Arguments = “< input”;
OutputSandbox = { “output”, “error”, 	
	 “secuences.dnd”, “secuences.aln” 	
	 }

This JDL would run the command “clustalw”,
but as we do not expect it to be already installed
in any remote system, we must copy it to the re-
mote executing node before running. In addition,
as “clustalw” needs to read its parameters from
its standard input (normally interactively) we also
copy a file containing these parameters (as we
would have typed them) and ask it to read them
from a file. Thus we must copy (InputSandbox)
the program executable file, the input file and
the file with the sequence data. When it finishes
we get (OutputSandbox) its output, any errors
and the main files generated by Clustal (the den-
drogram and the multiple alignment).

Note: as of recent versions of the middleware the
command line is passed “as is” to the program
and is not processed by a shell, hence I/O redi-
rection and pipes specified as “Arguments” do
not work. Not to worry, as there are other ways to
achieve this, and coincidentally these are a lot
better (see below).

The miracle trick

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “job.sh”;
StdOutput = “out”;
StdErr = “err”;
InputSandbox = { “job.sh”, “job.tgz” };
OutputSandbox = { “output.tgz” };

Volume 14 Nr. 2	 EMBnet.news	 23

This is a trivial JDL, but with a generic application,
where we use several tricks that make it advis-
able as a generic JDL to simplify job submission:
this JDL copies a shell script and a compressed
‘tar’ package to the remote system, then runs the
script redirecting its standard output and error,
and finally specifies as output to be recovered
another compressed package.

The trick consists of packing -and compressing
to save bandwidth- everything that is needed
for our job in a single file (executables, libraries,
data, etc...) which we call ‘job.tgz’ and then
creating a script that extracts the contents of the
package, runs our programs with any needed
command arguments, environment variables,
etc... and finally packs the results we want into
‘output.tgz’.

This is also an elegant example of a general so-
lution for the case where we want to run a se-
quence more or less complex of commands
instead of just a single one: we would copy all
executables and then run the commands, using
pipes, I/O redirection and all the utilities of a shell
just as we would locally. A sample script might
look like:

#!/bin/sh
tar -zxvf job.tgz
	 # extract all files needed from 	
	 the package
# set up the environment to find shared 	
	 libraries and executables
export LD_LIBRARY_PATH=./tinker/		
	 lib:$LD_LIBRARY_PATH
export PATH=./tinker/bin:$PATH
do the job
pdbxyz coordinates.pdb
minimize coordinates.xyz < ./min.in
anneal coordinates.xyz_2 < ./ann.in
analyze coordinates.xyz_3 < ./ana.in
xyzpdb coordinates.xyz_3
pack only the results we want
tar -zcvf coordinates.pdb_3 analyze.out
anneal.out minimize.out

Before submitting this script we will need to make
a package containing all executables, shared
libraries, parameter files for TINKER, files with pro-
gram options for the programs we want to run
(*.in) and the original data file (coordinates.
pdb). The script will extract the package, set up
the environment, run a series of commands that

generate a large number of files and save for
later recovery in a package only those that we
will finally be really interested in. When we recover
the results we only need to extract the contents
from this package.

Once the job has been described we only need
to submit it. This is what we are going to learn
next.

Executing jobs

Once we have prepared the executables and
data files and written a job description using JDL,
we can finally run our job on the Grid.

Job submission
All we need to do to submit a job is use the com-
mand edg-job-submit stating the ‘JDL’ file to be
processed and any needed extra options (e. g.
if we have not used the VirtualOrganisation
directive we can indicate now which VO to use
with the option “-vo=VONAME”)

edg-job-submit -vo=biomed job.jdl
Selected Virtual Organisation name 	
	 (from --vo option): biomed
Connecting to host egee-rb-07.cnaf.	
	 infn.it, port 7772
Logging to host egee-rb-07.cnaf.infn.	
	 it, port 9002

 JOB SUBMIT OUTCOME
 The job has been successfully 		
	 submitted to the Network Server.
 Use edg-job-status command to check 	
	 job current status. Your job 	
	 identifier (edg_jobId) is:
 - https://egee-rb-07.cnaf.infn.		
	 it:9000/h7nQIl1ql5-oQsMJwABP8Q

This command submits the Job to the Grid and
displays information about it, most importantly
the unique “identity” of our job in the Grid. It
is very important to note down this identity as it is
our only means to refer to our job when we want
to ask the Grid about its status or we want to re-
cover its output after it terminates. The identity is
-as you can appreciate- a URL and it is really dif-
ficult to remember. For this reason, it is better to
issue the command edg-job-submit followed
by the command line option “-o=file” to ask
that this identity be added to the file specified

24	 EMBnet.news	 Volume 14 Nr. 2
and so that we can later use this file to refer to
our job.

# edg-job-submit --vo biomed --output 	
	 job.id job.jdl
Selected Virtual Organisation name 	
	 (from JDL): biomed
Connecting to host egee-rb-07.cnaf.	
	 infn.it, port 7772
Logging to host egee-rb-07.cnaf.infn.	
	 it, port 9002
======= edg-job-submit Success ========
 The job has been successfully 		
	 submitted to the Network Server.
 Use edg-job-status command to check 	
	 job current status. Your job 	
	 identifier (edg_jobId) is:
 - https://egee-rb-07.cnaf.infn.		
	 it:9000/4yh-ujUotqgxe9Gv13S5hw
 The edg_jobId has been saved in the 	
	 following file:
 /home/jr/sample.id
=======================================

As you can appreciate, the difference is that now
we are told that the identity of our job has been
appended to the contents of the specified file.

Verifying the status of a job
Once submitted, we can verify the status of our
job in the Grid using the command edg-job-
status and the identity of our job. If you were
wise enough to follow our advice from the previ-
ous section and saved it on a file, it will be easier
to use this file to indicate the identity (instead of
typing -or copy-paste- a long and random URL).

edg-job-status --input sample.id

BOOKKEEPING INFORMATION:
Status info for the Job : https://	
	 egee-rb-07.cnaf.infn.it:9000/	
	 4yh-ujUotqgxe9Gv13S5hw
Current Status: Scheduled
Status Reason: Job successfully 	
	 submitted to Globus
Destination: mallarme.cnb.uam.	
	 es:2119/jobmanager-pbs-biomed
reached on: Sat May 6 16:01:54 	
	 2006

As you can also see we do not need to specify
the VO any more as we are using a unique job
ID.

Recovering job results
After our job has completed (Current Status:
Done) we need to recover the output results from
the Grid using edg-job-get-output. By default
the results recovered will be saved on a directory
under /tmp with out username and the job ID.
This is inconvenient and most times we will want
to save the results on a local subdirectory or our
current work directory, which we can do using the
argument “--dir”:

# edg-job-get-output --dir results --	
	 input sample.id
Retrieving files from host lxshare0219.	
	 cern.ch

 JOB GET OUTPUT OUTCOME
 Output sandbox files for the job:
 - https://egee-rb-07.cnaf.infn.		
	 it:9000/4yh-ujUotqgxe9Gv13S5hw
 have been successfully retrieved and 	
	 stored in the directory:
/home/jr/resultados/4yh-			
	 ujUotqgxe9Gv13S5hw

All that remains is to get into the newly created
directory and see the results.

Summary

As we have seen till now, using the Grid is not
that difficult. Basically, once we have done the
initial registration steps, all that is needed from us
whenever we want to use the Grid is that we fol-
low a number of easy steps:

Once every work session start it with voms-
proxy-init
For each job

	 1. prepare a description on a JDL file
	 2. submit it with edg-job-submit
	 3. verify its status periodically with edg-		
	 job-status
	 4. when it has finished recover its output 	
	 with edg-job-get-output

This is the easiest and simplest way to work. We
have described only the basic mechanisms to il-

1.

2.

Volume 14 Nr. 2	 EMBnet.news	 25
lustrate the philosophy of work, but we have a lot
more versatility at our reach than what we have
demonstrated: for instance we can specify that
a job is to run a parallel program using MPI over
a minimum number of nodes, or state that a job
must be interactive (and then the Grid will open
control connections between the remote node
and a local terminal so we can interact directly
with it) instead of a batch process, state a large
number of requisites, require that it be allocated
to queues with a given priority...

And there’s more: we also have storage ele-
ments on the Grid where we can store and ac-
cess data distributed all over the world, so that
we can access large disk spaces and use huge
datasets. We can modify existing programs and
develop new ones using specific Grid APIs so that
our program may include specific Grid support
(similar to what we do with MPI), use high level
routine libraries to access Grid resources through
high level abstractions of the available distrib-
uted resources (like GlobalArrays which mimics
distributed shared memory on clusters, NOWs or
the Grid, DRMAA which provides a standard API
to the Grid queue manager, etc..).

In any case we must keep in mind that Grid tech-
nologies are currently undergoing a quick and
extensive development and that there is still a
lot to be done and discovered regarding the
best ways to exploit them. If you are interested in
learning more, you are mostly welcome to par-
ticipate in this most exciting field.

Acknowledgements

We want to thank EMBnet[1] for making public-
ly available its education web site [2], and the
EU for its support to projects EGEE[3] (INFSO-RI-
031688) and EMBRACE[4] (LHSG-CT-2004-512092)
which have allowed us to do this work.

http://www.embnet.org

http://edu.embnet.org

http://www.eu-egee.org

http://www.embracegrid.org

1.

2.

3.

4.

Simplifying job
management on the
Grid

José R. Valverde

EMBnet/CNB, CNB/CSIC,
C/Darwin, 3, Madrid 28049

In previous articles we got a general vision of the
Grid and started dealing with jobs and their man-
agement on the Grid. In this article we will try to
systematize these experiences while performing
phylogenetic analysis (ClustalW), molecular dy-
namics simulations (TINKER) and quantum me-
chanics computations (PSI3), and we will see how
most of the process can be automatized.

What’s in a job?

Simplifying job management on the Grid

José R. Valverde, EMBnet/CNB
In previous articles we got a general vision of the Grid and started dealing with jobs and their

management on the Grid. In this article we will try to systematize these experiences while performing

phylogenetic analysis (ClustalW), molecular dynamics simulations (TINKER) and quantum mechanics
computations (PSI3), and we will see how most of the process can be automated.

What’s in a job?

 धमो रकिि रिकिः

Order protects those who protect order

In our previous article we saw a sample JDL to run clustalw. Let us have a look into it again:

Type = "job";
JobType = "normal";
VirtualOrganisation = "biomed";
Executable = "clustalw";
StdInput = "input";
StdOutput = "output";
StdError = "error";
InputSandbox = { "clustalw", "secuences", "input" };
OutputSandbox = { "output", "error", "secuences.dnd", "secuences.aln" };

We needed to send the sequences to align (obviously) and, since clustalw is an interactive program, we

needed to supply its input on a separate file (which also needs to be copied in the InputSandbox) and
tell the Grid to feed it to clustalw. As we do not expect clustalw to be a standard UNIX program
installed on any remote machine, we also had to send a copy of it in the InputSandbox.

More generally, whenever we want to run a job in the Grid we need to provide everything that may be
needed, and what is that?

● A command to execute . Only standard commands can be expected to be available on remote
nodes (actually, the Grid is rather homogeneous, running on Scientific Linux, but as local
administrators may decide to install different subsets or all of the SL distribution, we can only

rely on the standard UNIX and Grid tools being available). Any non-standard command must
therefore be copied to the remote node for execution in the InputSandbox (there are ways
around this, but we are not reviewing them now).

● Optional parameters . Most UNIX commands accept parameters on the command line. We can
specify them as Arguments in the JDL. Most often these will serve to specify the input and
output files to be used (but not necessarily as the clustalw example shows). The same can be
said of Environment variables, which are but a special way to provide additional arguments or
modification notices to our programs.

● Input data . All data to be processed is on our local system. The Grid does not know -nor has it
way to know- which input files will be needed for remote execution in advance, and so we must
add them to the InputSandbox.

● Auxiliary data . Besides the files we want to analyze, our program may need additional data files

Order protects those who protect order

In our previous article we saw a sample JDL to run
clustalw. Let us have a look into it again:

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “clustalw”;
StdInput = “input”;
StdOutput = “output”;
StdError = “error”;
InputSandbox = { “clustalw”, 		
	 “secuences”, “input” };
OutputSandbox = { “output”, “error”, 	
	 “secuences.dnd”, “secuences.aln” 	
	 };

We needed to send the sequences to align (ob-
viously) and, since clustalw is an interactive pro-
gram, we needed to supply its input on a sepa-
rate file (which also needs to be copied in the
InputSandbox) and tell the Grid to feed it to

26	 EMBnet.news	 Volume 14 Nr. 2
clustalw. As we do not expect clustalw to be a
standard UNIX program installed on any remote
machine, we also had to send a copy of it in the
InputSandbox.

More generally, whenever we want to run a job in
the Grid we need to provide everything that may
be needed, and what is that?

A command to execute. Only standard commands
can be expected to be available on remote
nodes (actually, the Grid is rather homogene-
ous, running on Scientific Linux, but as local
administrators may decide to install different
subsets or all of the SL distribution, we can only
rely on the standard UNIX and Grid tools be-
ing available). Any non-standard command
must therefore be copied to the remote node
for execution in the InputSandbox (there are
ways around this, but we are not reviewing
them now).

Optional parameters. Most UNIX commands ac-
cept parameters on the command line. We
can specify them as Arguments in the JDL.
Most often these will serve to specify the input
and output files to be used (but not necessarily
as the clustalw example shows). The same can
be said of Environment variables, which are a
special way to provide additional arguments
or modification notices to our programs.

Input data. All data to be processed is on our lo-
cal system. The Grid does not know -nor has it
way to know- which input files will be needed
for remote execution in advance, and so we
must add them to the InputSandbox.

Auxiliary data. Besides the files we want to an-
alyze, our program may need additional
data files with auxiliary information (param-
eter files, databases, shared libraries, etc...).
These must also be made available at the
remote node, usually copying them as parts
of the InputSandbox. Again, there are ways
around this but we are not going to deal with
them now.

Output data. We want to perform a computation
to achieve some results in the form of result-
ing data generated by the program. If it is pro-
duced on its standard output we can collect

•

•

•

•

•

it to a file with the StdOutput and StdError
directives, otherwise it will be saved on a file
somehow. In any of these cases, we need to
retrieve the results from the remote node by
specifying the data on the OutputSandbox.

Special requirements. Most often our job will be
pretty standard and straightforward and the
only special requirements we will need to
specify are that ours is a normal job to be run
on our default V.O. Some times, we will want
to add some additional requests (like an MPI
cluster, some minimum run time, etc...

All this is specified in the JDL as we have seen
and may lead to a rather complicated JDL. It
also requires us to change the JDL for each dif-
ferent command we want to run: if for instance,
we wanted to run t-coffee instead of clustalw we
would need to draft an altogether different JDL.

clustalw revisited
There is a different way in which we can run clus-
talw though: instead of crafting so much informa-
tion in the JDL we can simplify the JDL by execut-
ing a script and moving as much logic into the
script as possible. For example, we could use

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “clustal.sh”;
StdOutput = “output”;
StdError = “error”;
InputSandbox = { “clustal.sh”, 		
	 “clustalw”, “sequences”, “input” 	
	 };
OutputSandbox = { “output”, “error”, 	
	 “sequences.dnd”, “sequences.aln” 	
	 };

Notice that in this JDL we have substituted the
clustalw command by the name of a shell script
(clustal.sh) and that we have added the
script to the input sandbox as well. We do not
need now to specify the standard input as we
can take care of it in the script. A sample script
might look like:

#!/bin/bash
ls -l
chmod 755 clustalw
./clustalw < input
ls -l

•

Volume 14 Nr. 2	 EMBnet.news	 27

There are several things worth noting about this
script. First is that we need to set execute permis-
sions for clustalw: when we copy the input sand-
box to the remote working node, the Grid knows
that there is one executable file (the one labeled
as such, clustal.sh) and sets the permissions
for it, but all other files (including clustalw itself)
are set to default read-write permissions.

So that you can verify by yourself, we have add-
ed two ‘ls’ commands, one at the very begin-
ning (so you can check that clustalw is indeed
copied as a data file not as an executable) and
one at the end (so you can see the final status of
files). The output of all these commands will be in
the standard output file “output” that we collect
in the output sandbox.

Finally, notice that a script gives us more free-
dom: now we can specify I/O redirection (which
can not be specified on the JDL), producing as
complex pipelines as we need, and we can run
more than one command on the same job.
Using pipelines with more commands would en-
tail adding the files to the input sandbox and set-
ting the execute permissions before running the
pipeline, but that’s all.

The ability to execute more than one command
is also handy to debug and track job execution
remotely, and to gather other relevant info (like
execution statistics). Usually we can only get job
results if the executable finishes successfully, and
hence, if we are running clustalw and it fails for
one reason or another, we will never get anything
back (and will not be able to know what went
wrong). Using a script we can intercept clustalw
failure and collect additional data, make the
script store any needed data (as the ‘ls -l’ out-
put above) and retrieve it for later inspection. Note
that you may need to trap abnormal exit condi-
tions to avoid the shell aborting in the middle of
execution (which would result in a failure status
and all output being lost); check bash set -e
and trap directives for more information.

Using a generic job

“output” that we collect in the output sandbox.

Finally, notice that a script gives us more freedom: now we can specify I/O redirection (which can not
be specified on the JDL), producing as complex pipelines as we need, and we can run more than one

command on the same job. Using pipelines with more commands would entail adding the files to the
input sandbox and setting the execute permissions before running the pipeline, but that’s all.

The ability to execute more than one command is also handy to debug and track job execution
remotely, and to gather other relevant info (like execution statistics). Usually we can only get job
results if the executable finishes successfully, and hence, if we are running clustalw and it fails for one

reason or another, we will never get anything back (and will not be able to know what went wrong).
Using a script we can intercept clustalw failure and collect additional data, make the script store any

needed data (as the ‘ls -l’ output above) and retrieve it for later inspection. Note that you may need to
trap abnormal exit conditions to avoid the shell aborting in the middle of execution (which would result
in a failure status and all output being lost); check bash set -e and trap directives for more information.

Using a generic job

 एकोहमसहायोहं कृशोहमपिरचछदः |

 सवनपेपयेवविंवदा ििंिा मृगगेसय न जायिे ||
‘I am alone, helpless, weak when not accompanied’
Even in its dreams the lion does not think like this.

There are compulsory reasons to resort to scripts when using the Grid: we can run more commands,
win on versatility (may run complex pipelines), on JDL simplicity (we can move environment,
argument, I/O directives and so on into the script), and on safety (we can ensure graceful job
termination and additional monitoring). We may take this to the extreme by simplifying the JDL and
moving everything else to the script. This leaves us with a minimalistic JDL file that can be used for

any generic job:

Type = "job";
JobType = "normal";
VirtualOrganisation = "biomed";
Executable = "job.sh";
StdOutput = "out";
StdError = "err";
InputSandbox = { "job.sh", "job.tgz" };
OutputSandbox = { "output.tgz", “out”, “err” };

Note that in this JDL we have not specified any specific job name, executable, input or output file. It is
all generic. If we save it as “job.jdl” it will work for almost any general kind of job. So, how do we use

it?

The executable is a shell script called “job.sh”. We need to create a shell script with that name for each

job we want to run and put inside any directives needed to do our work on the remote node. We then

copy in the input sandbox only two files, our script and a ‘tar.gz’ compressed package. No executables,
no special data files, no nothing.... where is it? You guessed right! It is all in the job.tgz package. In

other words, we should pack inside it anything that we need to do our work: the executables, auxiliary
data, input data files, etc... everything should be packed before submitting the job to the Grid. What

about the output? It certainly will be different for each kind of job, but it does not matter either: we

‘I am alone, helpless, weak when not accom-
panied’

Even in its dreams the lion does not think like
this.

There are compulsory reasons to resort to scripts
when using the Grid: we can run more com-
mands, win on versatility (may run complex pipe-
lines), on JDL simplicity (we can move environ-
ment, argument, I/O directives and so on into the
script), and on safety (we can ensure graceful
job termination and additional monitoring). We
may take this to the extreme by simplifying the
JDL and moving everything else to the script. This
leaves us with a minimalistic JDL file that can be
used for any generic job:

Type = “job”;
JobType = “normal”;
VirtualOrganisation = “biomed”;
Executable = “job.sh”;
StdOutput = “out”;
StdError = “err”;
InputSandbox = { “job.sh”, “job.tgz” };
OutputSandbox = { “output.tgz”, “out”, 	
	 “err” };

Note that in this JDL we have not specified any
specific job name, executable, input or output
file. It is all generic. If we save it as “job.jdl” it will
work for almost any general kind of job. So, how
do we use it?

The executable is a shell script called “job.sh”.
We need to create a shell script with that name
for each job we want to run and put inside any
directives needed to do our work on the remote
node. We then copy in the input sandbox only
two files, our script and a ‘tar.gz’ compressed
package. No executables, no special data files,
no nothing.... where is it? You guessed right! It is
all in the job.tgz package. In other words, we
should pack inside it anything that we need to
do our work: the executables, auxiliary data, in-
put data files, etc... everything should be packed
before submitting the job to the Grid. What about
the output? It certainly will be different for each
kind of job, but it does not matter either: we only
need to retrieve another ‘tar.gz’ compressed
package file, requiring that any relevant output
data be stored in it by our job.sh script before
termination. Note that we need to keep stand-
ard output and error out of the output package:

28	 EMBnet.news	 Volume 14 Nr. 2
that is because they won’t be ready until our
shell script is done, and then it is too late to pack
them.

An skeleton script to run any job on the Grid would
then look like:

#!bin/bash
tar -zxvf job.tgz

# set any needed environment variables, 	
#	 e.g.
export PATH=$PATH:.

run as many commands as desired, e.g.
step1 | step2 | step3 > result 2> 	
	 errors

pack any needed output data e.g.
tar -zcvf output.tgz result errors 	
	 otherfiles

 There are a few interesting points: we need to
start unpacking the job.tgz package in order
to create all the necessary input files and ex-
ecutables, and we do not need to set permis-
sions this time (tar will do that for us, restoring the
original permissions they had on our local node)
so the script logic is simpler. We are free to do
anything we want now inside the script, with the
full power of the shell at our fingertips, including
complex setups with error recovery, monitoring,
etc... Our only concern must be to remember
storing at the end any data we need to recover
in the output.tgz archive.

Running a complex TINKER molecular dynam-
ics simulation
Let us have a look at how it would look if we were
running a molecular dynamics simulation using
TINKER: our shell script might look like

#!/bin/bash
run an MD simulaton using TINKER
(C) José R. Valverde, 2006
extract contents of job with
appropriate perms
tar -zxvf job.tgz

set up the environment to use shipped
shared libraries
export LD_LIBRARY_PATH=/lib:/usr/lib:./	
	 tinker/lib:$LD_LIBRARY_PATH
export PATH=./tinker/bin:$PATH

#!/bin/bash
run an MD simulaton using TINKER
(C) José R. Valverde, 2006
extract contents of job with
appropriate perms
tar -zxvf job.tgz

set up the environment to use shipped
shared libraries
export LD_LIBRARY_PATH=/lib:/usr/lib:./	
	 tinker/lib:$LD_LIBRARY_PATH
export PATH=./tinker/bin:$PATH

do the work
pdbxyz coordinates.pdb
minimize coordinates.xyz < ./min.in
anneal coordinates.xyz_2 < ./ann.in
analyze coordinates.xyz_3 < ./ana.in
xyzpdb coordinates.xyz_3

save remote host name for monitoring
/bin/hostname > host

pack only interesting results
tar -zcvf output.tgz coordinates.pdb_3 	
	 analyze.out anneal.out minimize.	
	 out host

As you can see, we have launched a complex
execution that runs a simulation composed of
various steps within a single Grid job, using I/O re-
direction, setting environment variables, etc.. as
needed and only worried about extracting the
input file and generating the output package.
A side benefit of this approach is that we pack
and compress all required data prior to transfer
and hence we reduce the bandwidth (and time)
needed to transfer data to and from the remote
nodes.

We now turn to the issue of building the original
job.tgz package. For simple commands like
clustalw above it might be trivial: e.g.

tar -zcvf clustalw sequences input

But for more complex environments it may easily
turn difficult quickly. To see it, let us consider the
problem of running various TINKER molecular dy-
namics simulations on the Grid again.

Our first problem is that if we want to run various
simulations, files for the various jobs will become
mixed unless we are careful. The easiest solution

Volume 14 Nr. 2	 EMBnet.news	 29
is to assign a separate directory for each differ-
ent job. This way files from one job won’t mix with
files from another, specially commonly named
files (job.jdl, job.sh, job.tgz...) will not clash
into each other.

We need to copy all the executable files into the
job.tgz input package, and then specify the
execution path in the shell script to find them. In
addition TINKER uses various auxiliary parameter
files, and we need to include any of them we will
use as well. We will also need to tell TINKER where
to find those auxiliary files in the remote node.

Our advice is that you try to keep things as clean
as possible. In this case it would make sense to
create a subdirectory within the job directory to
hold all tinker files and copy them in it. Then we
simply pack our input data and the directory and
that’s it. For example:

mkdir tinker
mkdir tinker/bin tinker/param tinker/	
	 lib
cp /somewhere/tinker/bin/pdbxyz tinker/	
	 bin
cp /somewhere/tinker/bin/minimze 		
	 tinker/bin
....
cp /somewhere/tinker/param/amber.prm 	
	 tinker/param
...
tar --exclude ‘job*’ -zcvf job.tgz *

Here we simply pack all files in our job directory
except the job.jdl, job.sh and job.tgz files
which will be copied by the Grid and need to
be in the archive package. The shell script will
only need to specify the paths accordingly (see
above).

Finally, although TINKER is normally linked stati-
cally, many programs are not, and we need to
spot all shared libraries required by our execut-
able and include them as well. This we can do
using the command ‘ldd’, and it can be au-
tomatized as well: for instance we could use the
following script

#!/bin/sh
Save an executable under ./bin and
all its dependence libraries
under ./lib
Use as get_exec path_to_executable
(C) José R. Valverde, 2006
if [! -e ./bin] ; then
 mkdir ./bin
fi
cp $1 bin
if [! -e ./lib] ; then
 mkdir ./lib
fi
ldd $1 | cut -d’ ‘ -f3 | grep -v ^/lib 	
	 | grep -v ^/usr/lib | \
while read line ; do
 if [-e $line] ; then echo cp 	
	 $line ./lib ; fi
done

This is a very simple script that will analyse an ex-
ecutable file and copy it to a subdirectory called
‘./bin’, and all its depended shared libraries into
a subdirectory named ‘./lib’ both in the current
directory. It can be greatly enhanced, e. g. by
adding some error detection mechanisms and
other features.

Running a PSI3 Quantum mechanics simula-
tion
As another example, let us run a quantum me-
chanics simulation using the package PSI3. PSI3
is a publicly accessible QM environment that re-
lies on dynamic libraries and also uses several
auxiliary data files. Let us start by creating a job
directory and seeding it with our template job.
jdl file from a master copy held somewhere
else (/somewhere/grid-skel):

mkdir psi3job
cd psi3job
cp /somewhere/grid-skel/job.jdl .

We will now create our input data file (input.
dat), which will be

30	 EMBnet.news	 Volume 14 Nr. 2

% This is a sample PSI3 input file.
% Anything after a percent sign is
% treated as a comment.
psi: (
 label = “cc-pVDZ SCF H2O”
 jobtype = sp
 wfn = scf
 reference = rhf
 basis = “cc-pVDZ”
 zmat = (
	 o
	 h 1 0.957
	 h 1 0.957 2 104.5
)
)

Running psi3 on the command line shows that it
needs the programs input cints and cscf to
run. It will also need two auxiliary files with internal
data. So, we now create the directories and copy
those files inside using the script we saw above to
carry over any needed shared library as well:

sh /somewhere/grid-skel/get_exec.sh 	
	 /somewhere/psi3/bin/psi3
sh /somewhere/grid-skel/get_exec.sh 	
	 /somewhere/psi3/bin/input
sh /somewhere/grid-skel/get_exec.sh 	
	 /somewhere/psi3/bin/cints
sh /somewhere/grid-skel/get_exec.sh 	
	 /somewhere/psi3/bin/cscf
mkdir share
cp /somewhere/psi3/share/psi.dat share
cp /somewhere/psi3/share/pbasis.dat 	
	 share

Next we create our job.sh script:

#!/bin/bash
tar -zxvf job.tgz

find auxiliary data
export PSIDATADIR=share
find executables
export PATH=$PATH:bin
find shared libraries
export LD_LIBRARY_PATH=$LD_LIBRARY_	
	 PATH:./lib

run the QM simulation
psi3 input.dat output.dat
/bin/hostname > host

tar -zcvf output.tgz output.dat psi.32 	
	 host

In the script we have simply extracted the pack-

age, set up the environment so both auxiliary
data, executables and libraries are found, we run
the driver program (psi3) which will in turn run the
others, and finally save the results produced by
the programs into the ouput.tgz file.

To create the input package we can use a tar
command like the one we used before:

tar --exclude ‘job*’ -zcvf job.tgz .

And we are ready to run our job. At this point we
will have on our job directory all the files need-
ed to run the job (job.jdl, job.sh and job.
tgz) as well as the original contents of job.tgz
(which you could delete if you so wish). All that
we need to do now is run the job using the grid
commands.

Wrapping it all together

Aip pa Eé;mad ey< zaô< ce* ui´ba exkm !,

ANyÅva;Rmip TyaJy< ÉaVy< NyaYy Ekseivna.

One who ever stands for reason must accept
a science, though man made, if it stands to

reason; and he must reject the other (the unrea-
sonable) though it may be propounded by the

sages (of yore).

From previous articles we know what should
come next: we start by initiating a Grid session
with voms-proxy-init, then submit the job
with edg-job-submit, monitor it with edg-job-
status until it finishes and finally retrieve results
using edg-job-get-output.

In more recent versions of the EGEE middleware
you can substitute all edg-* commands by their
new equivalents glite-* (glite-job-submit,
glite-job-status, glite-job-get-out-
put..).

In order to simplify our users’ life we can also
automate this process so that a user needs not
know much about the Grid: s/he may only need
to set up his/her simulation or job and then use
a script to take care of all the magic needed to
deal with the Grid. Let us recapitulate: we have
decided to

Volume 14 Nr. 2	 EMBnet.news	 31

keep each job in a separate directory
copy a standard job.jdl inside
create a job.sh file
pack everything except the job.* files
start a Grid session
submit the job
monitor the job
grab job output

We can simplify things if we keep a copy of our
needed utilities somewhere handy (e. g. in a
grid-skel directory) and tell users to start the
Grid session themselves and build their own job.
sh file. Then, we could provide a driver script like
the following one:

#!/bin/bash
(C) José R. Valverde, 2006

copy the master JDL file
cp /somewhere/grid-skel/job.jdl .

build input package
tar --exclude ‘job.*’ -zcvf job.tgz *

submit the job and save its ID
edg-job-submit -o job.id job.jdl

Wait for job to finish -Done (Success
or Fail)-
/bin/echo -n “Waiting”
edg-job-status -i job.id | grep -q 	
	 “Current Status: Done”

while [$? -eq 1] ; do
 /bin/echo -n “.”
 sleep 15
 # note that we do not test for
 # abnormal termination!
 edg-job-status -i job.id | grep -q 	
	 “Current Status: Done”
done

/bin/echo “”

Get job output into local dir and
cleanup Job details
edg-job-get-output -i job.id --dir .
clean up
rm -f job.id
rm -f edglog.log
rm -f job.sh
rm -f job.jdl

•
•
•
•
•
•
•
•

Move job output to local dir and
cleanup output directory
mv -i ${USER}_*/* .
rmdir ${USER}_*

Extract output package and clean it
tar -zxvf output.tgz
rm output.tgz

There are a few considerations worth noting:

First, this is a very simple script, and can be
greatly enhanced with additional error detec-
tion and recovery mechanisms, but as it is in-
tended to be run interactively by the user, we
can leave that to the user.

We copy the job.jdl file from a master direc-
tory into the current one. If the master directory
were in the same file system we could save
some space by hard linking to it.

We retrieve all output into the current direc-
tory and then enter some seemingly ‘magic’
file handling: remember that edg-job-get-
output stores all output not directly into the
current directory but within a newly created
subdirectory inside the current directory; this
subdirectory is named after the user name
(${USER}) and the job ID. Since we use a sepa-
rate directory for each single job, we need not
worry to find out the full name of this subdirec-
tory: there will be only one and we can use a
wild card to access it.

One might conceivably go one step further and
remove the need for the user to start the Grid (it’s
a trivial addition) and to create his own job.sh
script: instead of telling the user about it, we can
create a generic one.

tar -zxvf job.tgz
rm job.tgz
sh run.sh # user provided
rm run.sh
save everything as we do not know
what’s needed
tar –exclude output.tgz -zcvf output.	
	 tgz *

and tell the user to write only the run.sh script.
The problem with this approach is that normally
we cannot foresee which executables the user
will want to run, whether they are statically linked,

•

•

•

32	 EMBnet.news	 Volume 14 Nr. 2
if any auxiliary files or environment variables are
required, etc... If we are going to tell the user
about all this, we may as well ask him/her to write
his/her own job.tgz file using our template.

Of course, if we know in advance what is going to
be used then it becomes trivial to set up a mas-
ter template job with all required files and simply
ask the user to create a new directory with his or
her input data: then our grid-run script would
copy the full master job directory (including JDL,
scripts, executables, shared libraries, data files,
etc...) and run the job.

Summary

In this article we have seen a generic approach
to simplify job management. We have used this
basic approach with different variations in many
of our projects, reproducing the same basic pat-
tern in different languages (shell, PHP, Python,
Perl...) and adapting it to specific needs always
with success. In the next article we will deal with
a seemingly trivial problem: launching many jobs
to the Grid; we will see how the management
of large job numbers triggers a number of issues
inherent to a massively distributed infrastructure,
and will present successful approaches to cir-
cumvent them.

Acknowledgements

We want to thank EMBnet[1] for making public-
ly available its education web site [2], and the
EU for its support to projects EGEE[3] (INFSO-RI-
031688) and EMBRACE[4] (LHSG-CT-2004-512092)
which have allowed us to do this work.

http://www.embnet.org

http://edu.embnet.org

http://www.eu-egee.org

http://www.embracegrid.org

1.

2.

3.

4.

Grid computing (4):
Wuthering heights

José R. Valverde

EMBnet/CNB, CNB/CSIC,
C/Darwin, 3, Madrid 28049

Yesterday afternoon set in misty and cold. I had half
a mind to spend it by my study fire, instead of wading

through heath and mud to Wuthering Heights.

Emily Brönte. Wuthering Heights

This is the fourth instalment of a series of articles
on Grid computing. Up to now we have learned
to submit a job and monitor it, we have seen
how this can be applied to various example
Bioinformatics tasks and finally we saw how all the
process could be automated. In this article we
will go one step further, looking at better ways to
automate job management for large numbers
of jobs; this will require us to face seriously for the
first time the possibility of job failures.

Doing many things at a time
A person who has not done one half his day’s work by
ten o’clock, runs a chance of leaving the other half

undone.

If there’s something typical of modern com-
puting it is the ability to multitask (e. g. execute
more than one task simultaneously). Similarly,
Life Sciences have evolved towards a new para-
digm: whereas formerly we would be analyzing
one gene or protein at a time, we are now aim-
ing to analyse and understand full genomes or
proteomes (with tens of thousands of products)
at once.

We have seen in previous instalments how to au-
tomate the execution of a single job. Most tasks
we can perform nowadays consist of running pro-
grams developed in the “one-at-a-time” days,
and are well suited for performing one single
analysis, but there are still too few tools to perform
genome- or proteome-wide analysis with one

Volume 14 Nr. 2	 EMBnet.news	 33
single command. Further to it, many tasks are
time consuming, and if we would to implement
them serially (i. e. processing one dataset after
the other) full analysis would take considerable
time. As most datasets are analysed independ-
ently of each other, it makes sense to exploit the
Grid for these high-throughput (HT) tasks, devot-
ing one machine to each analysis and perform-
ing all them simultaneously (thus reducing the
wall clock time needed to reach our goal).

A similar argument may be applied to other high-
ly parallel tasks that can be performed more or
less independently of each other: some illustra-
tive examples are doing phylogenetic bootstrap
analysis, performing large Montecarlo simula-
tions (where values are generated independently
starting from different random seeds) or running
other high-throughput analysis (like independent
docking over separate PDB entries). There are
many more situations in which we can benefit
from the Grid and the possibilities are only bound
by your imagination.

So, the question is: how do we go about running
many simultaneous jobs on the Grid?

An example: bootstrap with PHYLIP
The most trivial approach would be to run each
different job one after another. This would pro-
vide little advantage over working on a single lo-
cal machine (although it still may make sense for
various reasons). We could do this, for instance
with a very simple shell loop, possibly typed in
on the command line. In this loop all we need to
do is go over each job submitting it and waiting
for its completion to retrieve results: as we have
already seen an example shell script to launch,
monitor a job and retrieve its results in the former
article, we can use it now.

If all our jobs are of the same kind, only differing
in the initial data set (e. g. in an HT, bootstrap
or Montecarlo analysis) we may create a master
job template directory containing all common
required files and a driver script (as shown in pre-
ceding articles). Then, generating all the required
actual job directories is a trivial task using the
shell: all we need to do is either copy the master
template or populate directories with hard links to
the master template (to save space).

For instance, let us suppose that we want to run
a phylogenetic bootstrap on a large set of long
sequences using Maximum Likelihood. ML is
computationally costly and if the input dataset
is large enough, DNAML may take days to run
for each single dataset: it makes sense to split
the bootstrap into many small jobs, each with a
different initial dataset instead of performing it
sequentially. Now, let us assume we have a di-
rectory where we hold our aligned sequences in
a file named ‘input _ sequences’:

First create a master job template
mkdir master_job
Populate master job template
cp /path/to/phylip/dnaml master_job/.
Generate driver script (run DNAML
with default options)
cat > master_job/job.sh <<END
tar -zxvf job.tgz
dnaml <<IN
y
IN
tar -zcvf output.tgz outfile outtree
END
We now have a template job directory
with everything
but the infile data.
Let’s create a thousand replicas
mkdir bootstrap
cd bootstrap
We will need random numbers for
SEQBOOT
this sets a trivial seed using our
PID
RANDOM=$$
for ((i=0; i<1000; i++)) ; do
 # we might ‘cp -Rua ../master_job 	
	 $i’ to copy everything too
 mkdir $i
 ln ../master_job/* $i/.
 # create ‘infile’ with only 1
replicate using
 # SEQBOOT and a random seed
 seqboot <<ENDSB
../../input_sequences
r
1
y
$RANDOM
ENDSB
 # move ‘outfile’ with the
 # replicate(s) to ‘infile’
 # in the job directory
 mv outfile $i/infile
done

34	 EMBnet.news	 Volume 14 Nr. 2

A short explanation is due here: the above in-
structions have created a master template di-
rectory (master _ job) and populated it with the
program we want to run (DNAML) and an appro-
priate driver script (which runs DNAML feeding it
the basic input to analyse a single dataset using
default options). Then we simply enter a loop that
generates one thousand jobs, naming them by
job number. Each directory contains a copy of
the master files for the job (in our case we have
chosen to use hard links to save space) and its
own, different input file (which we generate using
SEQBOOT with the appropriate input). If you want
to compute more replicates per job then you
simply change the number (1) given to SEQBOOT
by whatever you want and modify the input to
DNAML (or whatever program you intend to run)
accordingly. Note that if you want to save space,
hard links should be used: this is so because when
we later use ‘tar’ symlinks will be packed as such
and the actual file contents will not be included
in the job package, and may be a little bit more
savvy than using symlinks.

Now, running the bootstrap executing each job
sequentially becomes a trivial exercise:
for i in * ; do
 cd $i
 sh grid-execute.sh
 cd ..
done

This simply visits all subdirectories and runs their
jobs, one after another. The script ‘grid-exe-
cute.sh’ would be similar the last script we de-
scribed in our previous article, which submits the
job, monitors it and retrieves the output.

When this is finished we will have 1.000 directories,
each with its own ‘outfile’ and ‘outtree’ com-
puted for a different input dataset (generated by
SEQBOOT), and all we need is to concatenate
the trees together and use CONSENSE.

Exploiting Grid parallelism
In the previous section we took care of the most
complex thing: generating the job directories. It
looks complex on paper, but if you actually try
it, you will see that it is very easy to do. However
in the trivial case we have shown, we simply run
jobs sequentially, one after the other, not unlike
running DNAML with multiple datasets. We can

do better than that: we can have each job run
independently on a different CPU on the Grid, all
of them simultaneously.

The easiest way to do this is to simply spawn each
job control script as a background process:
for i in * ; do
 cd $i
 sh grid-execute.sh &
 cd ..
done

Now we will have a thousand copies of the moni-
tor script, one for each job directory, submitting
and following each job in parallel.

This is all too easy and certainly works. It has
some drawbacks though: first it requires a sepa-
rate monitoring process for each remote job in
our local computer. For 1.000 jobs this is already
a heavy penalty which slows down work on our
machine (affecting other users), but if we want to
run even more jobs (say 10.000 or 100.000) it may
saturate our local machine capacity. Worst, these
processes eat resources (at least some amount
of memory) even though most of the time they
are sleeping waiting for their remote jobs to finish,
thus wasting valuable resources. And even worst
yet, these processes will be spawned very quickly
and compete for access to Grid resources (sub-
mission, monitoring and retrieval) all at the same
time, saturating communications with the Grid.

This approach will usually work well for small num-
bers of jobs, but for large numbers of jobs it is
wasteful, inefficient and disturbing to other us-
ers. In that case, it is better to use a different ap-
proach: it makes more sense to serialize each
different step in the monitoring process. In other
words: we use first a loop to submit all jobs, then
we use a second loop to monitor them and re-
trieve results if finished:

#!/bin/bash
#
for i in * ; do
	 cd $i
	 ln ../../master_job/job.jdl .
	 ln ../../master_job/job.sh .
	 edg-job-submit -o job.id job.jdl
	 cd ..
done

Volume 14 Nr. 2	 EMBnet.news	 35

#!/bin/bash
#
for i in * ; do
	 cd $i
	 ln ../../master_job/job.jdl .
	 ln ../../master_job/job.sh .
	 edg-job-submit -o job.id job.jdl
	 cd ..
done
now monitor all jobs (check 24 times
at one hour intervals)
for ((hour=0; hour<24; hour++)) ; do
 for i in * ; do
 edg-job-status -i job.id | grep 	
	 -q “Current Status: Done”
 if [$? -eq 0] ; then
 edg-job-get-output -i job.	
		 id --dir .
 mv -i ${USER}_*/* .
 fi
 done
 sleep 3600 # wait one hour
done

The trick here is to define a maximum amount of
time for all processes to exit and test their status
periodically (e. g. at one hour intervals) instead of
waiting for all to finish before retrieving results.
There are compelling reasons for this as we will
see later.

Looks simple enough, doesn’t it? Well, it is, and
we have used it, sometimes even issuing the
commands by hand to the shell to control jobs.
It is inefficient, though, at various steps, most no-
tably in the retrieval step, where if a job is finished
we may try to recover output more than once.
But we will not worry more about it now.

Facing the storm
Having levelled my palace, don’t erect a hovel and
complacently admire your own charity in giving me

that for a home.

Up to now, everything seems OK, we have done
that many a time, and our experience has led
us to conclude that, while initially correct, this
approach requires many further improvements.
Why so? Because we want to run many, many
jobs, that’s why.

See, when you run a single job, either manually or
using a driver script like the one described in our
previous article, there is not much need to worry
about problems: in the unlikely event that some-

thing goes wrong you will notice and all you need
to do is run the job again. But now we are talk-
ing many jobs. This implies two things: first is that
however unlikely that something goes wrong, the
odds now are higher (multiply by the number of
jobs) and second that manual recovery is a real
hassle because of the sheer number of jobs.

Still, we have been able to use this approach by
simply running the jobs and only afterwards look-
ing for failed jobs and restarting them. With mi-
nor modifications the same procedure used to
launch many jobs can be used to launch abort-
ed ones. However, it would be better if we could
deal with most of these problems automatically.

An improvised command line for
‘ad hoc’ job recovery

for i in * ; do cd $i ; grep -q Done 	
status ; if [$? -ne 0] ; then rm job.
id ; edg-job-submit -o job.id job.jdl ;
fi ; cd .. ; done

At this point you may wonder if there really are
problems to worry about. Well, yes, the Grid is
a distributed infrastructure and things may go
wrong for a number of reasons:

Job submission may hang sporadically due to
network problems: in this case, job submission
hangs indefinitely (due to the way the submis-
sion protocol is implemented) and then all
your job submission process stalls. This usually
happens about 1 in every 10.000 jobs.
Resource allocation to your jobs requires glo-
bal Grid awareness on the resource broker (RB)
node, and this awareness is network costly, tak-
ing a decision is computationally expensive as
well. When you submit too many jobs to a sin-
gle RB it saturates easily and gets inefficient.
Further, what if your network connection to the
RB fails for any reason or it is not available? All
your jobs would stall until the RB recovered.
Job execution at the working nodes may fail
too: perhaps the WN is faulty, or may be it has
not enough memory, or it was shutdown mid-
way in the execution, or simply your job failed
by itself (e. g. a program bug), or it exceeded
some queue or resource limit. Your job will end
with an Aborted status. Job failure rate my
sometimes grow to as much as 10% of your
jobs (even more in special cases).

•

•

•

36	 EMBnet.news	 Volume 14 Nr. 2

Sometimes jobs get lost in the nether world.
This may happen because of a number of
reasons (like network failures or Grid inconsist-
encies) and will result in your job never report-
ing a finish status. In practice it will be as if your
job had never terminated, was eternally run-
ning. This typically happens about 1 in every
10.000 jobs.
Occasionally some jobs end with a success
status but their output is lost somewhere in the
Grid and cannot be recovered.
Other various kinds of failures may happen, but
most often they will result in symptoms similar
to those above.

Now you see why we called this article as we did:
even if whatever may go wrong is unlikely, when
we submit many jobs it will sooner or later affect
us. Wouldn’t it be nice if we dealt with this auto-
matically?

Uttering the magic spells
If he loved you with all the power of his soul for a

whole lifetime, he couldn’t love you as much as I do
in a single day.

In what follows we will explain the basic tricks that
we use to deal with the above problems. We will
not be providing full listings as this would make
this article unsuitably large. If you want to get the
full, tested, production scripts and save yourself
the work, you are welcome to download them
from our web site[1].

Dealing with submission problems
The tyrant grinds down his slaves and they don’t turn

against him, they crush those beneath them.

We have already mentioned that sometimes
submission hangs indefinitely due to network
problems. This is very easy to spot and fix: usu-
ally submission is a very quick process, and while
it depends on the amount of data needed to
be transferred for a given job it usually falls in the
range of 10 seconds to 1 minute. The simplest
approach is to define a timeout and consider
that any submission taking more than the time-
out time has stalled and needs to be stopped
and retried again. Using the shell we would do it
as follows:

•

•

•

Maximum time in seconds to wait for
a submission to occur
timeout=180
Maximum number of attempts to submit
a job
maxtries=5
for ((i = 0; i < $maxtries; i++)) ; do
	 # $! is the PID of the most
	 # recently spawned background
	 # command
	 (submitter=$!
		 # myself (I’ve just been
		 # spawned)
	 # start timeout watchdog
 (sleep $timeout
		 pkill -P $submitter
)&
	 edg-job-submit -o job.id 	
		 job.jdl
) &
	 wait $!
done

What we are doing here is a bit convoluted be-
cause of the way the shell processes PIDs, but
basically it is simple to understand: we want to
kill a submission that takes too long, for which we
create a separate watchdog process. The watch-
dog is simply a subshell that waits for some time
and sends a KILL signal. Since the watchdog is a
separate process and needs to be started before
the submission takes place, it cannot know the
ID of the edg-job-submit process, so the only
way it can stop it is if both, the watchdog and the
edg-job-submit command are siblings, sons
of the same father, and we kill all our parent’s
offspring (pkill -P). Thus we have for the watchdog
and edg-job-submit the simple code

(sleep $timeout; pkill -P $submitter) &
edg-job-submit -o job.id job.jdl

However, if both of these processes were exe-
cuted directly, we might also kill our submission
script, and so both of them must be executed
within another subshell, so that when the watch-
dog kills its (intervening) parent it stops itself and
edg-job-submit, but not the whole script. That
is why we must use

(submitter=$! # find my ID
 (sleep $timeout ; pkill -		
	 P $submitter) & # kill the 	
	 parent subshell and kids
 edg-job-submit -o job.id job.jdl
) &
wait $!

Volume 14 Nr. 2	 EMBnet.news	 37

The construct ‘(...)& wait $!’ allows us to
generate an independent subshell (&) and wait
for it to complete. This is needed because if we
omit the & bash will not create a subshell and
instead execute everything directly.. leading the
watchdog to kill the whole script, and if we don’t
wait, all submissions will be attempted simultane-
ously (which is what we want to avoid).

Dealing with resource management
Treachery and violence are spears pointed at both
ends; they wound those who resort to them worse

than their enemies.

The next issue to consider is how to deal with a
broken RB, and being nice, how to avoid over-
loading any single RB obtaining as a by product
possibly better resource management and less
hassle to other users. The basic approach to deal
with this is to spread the load of job submission
over different RBs, as many as possible. In order
to do this, we need to know which RBs are avail-
able, which we can find out using the lcg-in-
fosites command:

get list of available RBs into
an array variable
lcg-infosites --vo biomed rb | sed -e 	
	 ‘s/:7772//g’ > $base/rb.list
rblist=($(cat “$base/rb.list”))
rbno=${#rblist[@]}

With this code we have selected all available RBs
and stored them in a shell array. We may now use
this array to drive submission. For this we need to
massage two special configuration files that will
direct edg-job-submit to a given RB chosen at
random from the available list. The trick now is to
first generate these two files from a template us-
ing ‘sed’ and then submit the job. If job submis-
sion fails we assume that the RB we used is bro-
ken and remove it from the list. As an additional
bonus, we may check if the list is empty and if so,
reset the array of valid RBs to the initial full list:

Re-read the list of valid/available
RBs
it may have changed if any one failed
rblist=($(cat “$base/rb.list”))
rbno=${#rblist[@]}
select a random number in the range
0 - $rbno
#	 To avoid flooding and
overloading a single RB

no=$RANDOM
let “no %= $rbno”

set the target RB to ${rblist[$rbno]}
sed -e “s/%RB%/${rblist[$no]}/g” $base/	
	 rb.conf > $job/myrb.conf
sed -e “s/%RB%/${rblist[$no]}/g” $base/	
	 rb.vo.conf > $job/myrb.vo.conf

actually submit the job
cd $job
edg-job-submit -c myrb.conf --config-vo
myrb.vo.conf -o job.id job.jdl
save exit status
status=$?
cd ..
edg-job-submit exits with 0 on
success, >0 on error
#	 check exit status and if failed,
remove RB from list
if [$status -eq 0] ; then
 exit $status
else
 mv $base/rb.list $base/rb.list.old
 # remove failing RB
 grep -v ${rblist[$no]} $base/		
	 rb.list.old > $base/rb.list
 # check if list is empty
 rbno=`cat $base/rb.list | wc -l`
 # if so, reset and hope for the
 # best
 if [$rbno -eq 0] ; then
	 #echo “resetting list of RBs”
	 lcg-infosites --vo biomed rb 	
		 | sed -e ‘s/:7772//g’ > 	
		 $base/rb.list
 fi
 exit $status
fi

We can combine the two tricks (a watchdog
timeout and RB rotation and recovery) to pro-
duce a safer submission script.

Recovering failed jobs
You said I killed you - haunt me, then! The murdered

do haunt their murderers, I believe.

This is initially easy: we just check the job exit sta-
tus and if it is “Aborted” then resubmit it. As we
are going to deal with many jobs, we would like
to make it more efficient to avoid repeating use-
less queries to the Grid for already finished jobs.
All we need to add is some kind of persistence
recording the status, like saving it on a file or shell
array.

38	 EMBnet.news	 Volume 14 Nr. 2

To make recovery more efficient and reduce Grid
load, we simply add a few tricks: first, we check if
a file recording the status of a job exists and if it
does, we read the contents to avoid queries on
successfully terminated jobs. In all other cases we
check the status and act accordingly. We also
need a policy on resubmissions: we might keep
on resubmitting failed jobs until we succeed, but
if the problem lies in our job (e. g. a software bug)
then we will never notice as it will be retried for-
ever. Thus it is best to define a maximum amount
of retries so that anomalous cases can be inves-
tigated further. As each job is independent and
may fail (or not) at any time, we need to keep
track of retries on a per job basis, for which hav-
ing some persistence is again convenient.

Our recovery check for aborted jobs might thus
look like

for i in * ; do
	 if [! -d $i] ; then continue ;
fi
	 cd $i

	 # check if we have any status
	 # report
	 if [! -f status] ; then
 edg-job-status -i job.	
			 id > status
 fi
	 # locate aborted jobs and
	 # restart them
	 grep -q Aborted status
if [$? -eq 0] ; then
 	 edg-job-submit -o job.id 	
		 job.jdl
		 # increase retry count on
		 # file
		 try=`cat retry.cnt`
		 let try++
		 echo $try > retry.cnt
	 fi
.....
done

Restarting mute jobs

Any relic of the dead is precious, if they were valued
living.

Another problem that can happen is that output
recovery fails. Since we are saving the Grid ter-
mination status on a file, we may check for suc-
cessfully finished jobs that have generated no
output. For this we need some way to check out-

put, usually the existence of a file that we know
for sure should have been generated by the ex-
ecution of our command. In our PHYLIP example,
it might be ‘outfile’: if it does not exist and the
job executed OK, we know the output has been
lost. Checking for this case would be similar to
the above, but we now check for successful jobs
instead of aborted ones and verify the results:

grep -q Done status
	 if [$? -eq 0] ; then
	 if [! -s ‘outfile’] ; then
		 # resubmit job
 edg-job-submit -o job.id 	
		 job.jdl

		 # increase retry count
		 try=`cat retry.cnt`
		 let try++
		 echo $try > retry.cnt
	 fi
	 fi

Detecting immortal jobs
This last case is the most difficult to manage.
These are jobs that were submitted correctly
and started execution (their status reached the
“Running” stage) but which otherwise disap-
peared from the Grid, being left forever in a
“Running” state. They may have died, aborted
or succeeded but their Grid status has not been
updated and will never be.

Why is this such a difficult problem? In the gen-
eral case it may be too difficult to predict when
a given job should finish: in some cases job du-
ration may vary widely from one instance to an-
other. But even if all jobs were more or less homo-
geneous (like in our bootstrap example) there is
still a large variability component stemming from
differences at the working nodes: job duration
will depend on WN specs (CPU type and speed,
memory available, etc...), queue priority at the
WN and workload (one WN may support various
queues at different priorities for various kinds of
jobs or VOs and simultaneous execution of sev-
eral jobs). And even so, we are not guaranteed
when a job will start executing (if the Grid is over-
loaded, it might be delayed waiting on queue
for an indefinite amount of time). The bottom line
is that in general it is difficult to predict exactly
how much time a job will take on the Grid.

Volume 14 Nr. 2	 EMBnet.news	 39

Not all is lost however: most times we will have
an estimate of how much we can expect a job
to take, or at least how much we are willing to
wait for a job to finish. The simplest solution, and
probably the most advisable one in general (as
this is something that happens only about 1 in
every 10.000 jobs) is to just ignore the problem
and let the user know when after some reason-
able time there are still unfinished jobs, provid-
ing the user with a method to cancel those and
resubmit them.

If we want full automation, and can define an
upper bound, then it is a trivial thing to automate
following our previous examples: submit all jobs
and monitor them until the time limit is reached
and after time has completed, kill and restart
any pending jobs.

The problem with a kill and restart strategy is that
some times it may really happen that a job actu-
ally takes that long to finish... or that we cannot
be sure and must wait. In these cases, another
successful approach is to resubmit those jobs
without cancelling the original one and wait for
the first to finish. If the job was immortalized, the
replica will terminate, if not, either of them will,
depending on luck..

An extreme approach would be to replicate all
jobs from the onset one or more times, waiting
for the first to finish and killing all others once the
output of one instance has been successfully
retrieved. This is most interesting not to prevent
immortal jobs but when we have not that many
jobs but want to ensure quickest termination: it
may be wasteful of resources but ensures you al-
ways get the fastest response from the quickest
replica to terminate.

Wrap up

We have seen a number of problems and so-
lutions that will prove useful if you want to run
large numbers of jobs on the Grid. All of us have
started with simple tasks and moved on to bigger
problems, and all of us have had to face these
same problems. Knowing them in advance and
having a tool set of solutions to deal with them
will enable you to understand what is going on
when things get awry and quickly apply the fix
for them.

Although the examples we have shown use the
bash shell to automate all the work, the basic
concepts laid out work exactly the same on any
other setting: should you be using other script-
ing language, or a compiled or interpreted one,
the approach is the same (you may need to use
threads instead of processes for example but
conversion should be easy). The main reason
we have used the shell is one of generality: al-
most any language sports a system() call that
executes a command under the sh/bash shell
so that if your chosen development language
falls short on any need you can always resort to
use these tricks directly by invoking the shell from
system().

Eventually, the middleware -which is in continu-
ous evolution- will solve these problems, or even
provide automatic tools to deal with large job
numbers safely, but you should not wait till them
to make your dreams come true: now you know
enough to go forward. In our case we have not
finished our example, it is not a complete, work-
ing program and if you want to implement it you
will need to complete it yourself. Most notably,
we have ignored the final step to collect all sep-
arate output files (a simple ‘cat */outtree >
treesfile’) and to run CONSENSE. As a final ad-
vice, and as you can see this is not fit for the av-
erage John Doe, and so, whenever you decide
to develop large projects, our counsel is that you
also invest some time in making it easy to use for
wet lab users.

From here it is only a matter of creativity and im-
agination to find problems requiring large num-
bers of jobs that can be adapted to the Grid.
But, if there is something we can be sure, is that
human ingenuity is difficult to drain.

Acknowledgements
We want to thank EMBnet[2] for making public-
ly available its education web site [3], and the
EU for its support to projects EGEE[4] (INFSO-RI-
031688) and EMBRACE[5] (LHSG-CT-2004-512092)
which have allowed us to do this work.

http://www.es.embnet.org/~jr/download/
ht-grid.tgz

http://www.embnet.org/

http://edu.embnet.org/

http://www.eu-egee.org/

http://www.embracegrid.org/

1.

2.

3.

4.

5.

40	 Protein.Spotlight	 Issue 94
 Issue 94, May 2008

www.proteinspotlight.org

The selfish smell
Vivienne Baillie Gerritsen

We are surrounded by smells. Pleasant ones and not so pleasant ones, hard to distinguish ones, mild
ones and strong ones. Smells are not part of our everyday life for the simple sake of pleasure. They
are there for a purpose. The perfume of a flower can be used as an attractant for a potential
pollinator, for instance. The scent given off by a poisonous mushroom is a way of warding off a
predator and, by the same token, can be instantly recognised as toxic by an animal, thereby saving
both species. Special scents are also given off by males and females when mating is in the air, and
no wine grower will ever argue that a wine’s fragrance is not for the sole purpose of seduction. But
what is a smell? More often than not, a scent is made up of a mixture of odorant molecules which,
together, will trigger off a complex olfactory system that will ultimately let us perceive it and, if we
wish to, put words to it. The very first step in such a system involves an odorant receptor to which
an odorant molecule binds. Recently, a new human odorant receptor – OR7D4 – was discovered.
OR7D4 is special in that it is the first receptor known to respond to a specific odorant molecule.

Discovering an odorant receptor is nothing new.
Major discoveries of the like were made almost
twenty years ago. What is singular, though, is
that for the first time scientists are able to link
an odorant receptor to a specific ligand. This is
a breakthrough because, unlike our visual and
hearing senses which are relatively
straightforward, our olfactory senses are part of
a highly complex system. We know what light
frequency will give which colour. And what
sound pitch will give which sound. But no one
can say ‘this molecular structure will give that
smell’ – which would be the perfume maker’s
Holy Grail. What is more, knowing a

molecule’s structure is not sufficient. Any smell
is the combination of more than one odorant
molecule.

There are thousands of different smells and we
are capable of discerning each one of them. Yet
the human capacity to sniff out stuff has
slackened over the millennia because we have
put both our hearing facilities and our visual
capacities to a greater use. As a result, our
olfactory system is now one third of what it
probably was in our ancestors. A rat, for
instance, expresses about one thousand
olfactory receptor genes, while we only express
about three hundred. These olfactory receptors
are found in ciliary membranes immersed in a
film of mucus which lines the inner side of our
nose. The cilia are the tips of sensory neurons
which relay a smell along their axons to the
brain. The brain will either recognise the smell
it has just received – and consequently so will
we – or it will discover a new smell and
memorise it for the next time.

To cut a long story short, a specific scent is
made up of a certain number of odorant
molecules. Each molecule will bind to a specific
receptor found on the surface of a sensory
neuron. One molecule can bind to more than
one species of receptor. Likewise, one receptor
is able to bind more than one molecule.
Consequently, one smell can set a whole
network of neurones shivering and relaying
messages to the brain. The brain sums them all

‘Woman smelling coffee’ by Gizem Saka

Courtesy of the artist

Issue 94	 Protein.Spotlight	 41

up and can either come up with an immediate
answer such as ‘coffee’ or, if the smell is
unknown, whatever it is we have just smelled
will be remembered and a direct link will be
made to it the next time we get a whiff of it.

OR7D4 is an olfactory G-coupled receptor
similar to all those known to date. It is a
transmembrane protein, with an extracellular
loop, which acts as the binding pocket for its
ligand, and a cytoplasmic domain which reacts
with the G-protein. Androstenone, which is an
odorous steroid derived from testosterone,
lodges in the OR7D4 binding pocket thereby
changing the receptor’s conformation. This
triggers off the formation of cAMP thanks to the
G-protein, which in turn opens a channel
protein. The opening of the channel lets in
cations which change the neurone’s membrane
potential, and this is the very beginning of an
electric signal which is relayed, along the
sensory neurons’ axons, all the way to the brain
that will read the message as being part of a
smell.

Discovering a ligand’s receptor is one thing.
Attributing an actual smell to a specific ligand is
another. It seems to be the case with
androstenone though. This is a smell which is
usually perceived as unpleasant (urine- or
sweat-smelling), pleasant (sweet- or floral-
smelling) or without a smell. That would make
three smells, you’re thinking. Not really. It is
one smell perceived differently. What is it that
makes people smell a smell differently? Is it
innate? Or does it have something to do with
something far less tangible, such as personality,

past experience, or even the subconscious?
Many will answer that, though there is no doubt
a genetic basis, much must be due to something
which is not inherited. In the case of
androstenone, however, there may be a case of
an inherited difference in perception. Indeed,
there is a common variant of the OR7D4
receptor and it seems that individuals that carry
the same variant tend to smell androstenone in
the same way…which would point to the
genetic inheritance of a smell…

A lot of time and money is spent cracking the
scent code. Besides the perfume industry, there
are plenty of other industries that need smells to
sell. Food, cosmetics, washing-up powders and
beverages – to name a few – all make use of the
power of fragrance. The industry has even
learned how to trick our smelling senses. Take
synthetic lemon juice, for instance, which only
uses a few of the chemicals found in natural
lemon scent and yet we can identify it as lemon.
A handful of scientists have suggested that a
crude quality of a smell, such as its pleasantness
or unpleasantness, is simply a case of molecule
compactness. So the more compact an odorant
molecule is, the nicer it might smell. However,
it is also known that one same odorant molecule
can smell nice when there isn’t too much of it,
and awful when there is a lot. Take indole for
example which is an odour molecule found
abundantly in faeces and yet it is used in very
small amounts in perfumes… Inherited or not,
purely for our survival or not, what a smell will
never be able to take away from us are the
beautiful memories – and no doubt the bad –
they are able to stir in us.

Cross-references to Swiss-Prot

Olfactory receptor 7D4, Homo sapiens (Human) : Q8NG98

References

1. Keller A., Zhuang H., Chi Q., Vosshall L.B., Matsunami H.
Genetic variation in a human odorant receptor alters odour perception
Nature 449:468-473(2007)
PMID: 17873857

2. Trivedi B.
Smells rank: Solving a stinker of a problem
The New Scientist Magazine, 17 November 2007

3. Hatt H.
Molecular and cellular basis of human olfaction
Chemistry and Biodiversity 1:1857-1869(2004)
PMID: 17191824

Protein Spotlight (ISSN 1424-4721), http://www.proteinspotlight.org, is published by the Swiss-Prot group at the Swiss Institute of
Bioinformatics (SIB). Authorization to photocopy or reproduce this article for internal or personal use is granted by the SIB
provided its content is not modified. Please enquire at spotlight@isb-sib.ch for redistribution or commercial usage.

42	 EMBnet.news	 Volume 14 Nr. 2

ISSN 1023-4144
Dear reader,

If you have any comments or suggestions regarding this
newsletter we would be very glad to hear from you. If you
have a tip you feel we can print then please let us know.
Please send your contributions to one of the editors. You may
also submit material by e‑mail.

Past issues of EMBnet.news are available as PostScript or
PDF files. You can get them from the EMBnet organization
Web site:
http://www.embnet.org/download/embnetnews

Publisher:
EMBnet Executive Board
c/o Erik Bongcam-Rudloff
Uppsala Biomedical Centre
The Linnaeus Centre for Bioinformatics, SLU/UU
Box 570 S-751 23 Uppsala, Sweden
Email: erik.bongcam@bmc.uu.se
Tel: 	 +46-18-4716696

Submission deadline for the next issue:
August 20, 2008

Argentina
IBBM, Facultad de Cs.
Exactas, Universidad
Nacional de La Plata

Australia
RMC Gunn Building B19,
University of Sydney, Sydney

Austria
Vienna Bio Center, University
of Vienna, Vienna

Belgium
BEN ULB Campus Plaine CP
257, Brussels

Brazil
Lab. Nacional de
Computação Científica,
Lab. de Bioinformática,
Petrópolis, Rio de Janeiro

Chile
Centre for Biochemical
Engineering and
Biotechnology (CIByB).
University of Chile, Santiago

China
Centre of Bioinformatics,
Peking University, Beijing

Colombia
Instituto de Biotecnología,
Universidad Nacional de
Colombia, Edificio Manuel
Ancizar, Bogota

Costa Rica
University of Costa
Rica (UCR), School of
Medicine, Department
of Pharmacology and
ClinicToxicology, San Jose

Cuba
Centro de Ingeniería
Genética y Biotecnolgía, La
Habana

Finland
CSC, Espoo

France
ReNaBi, French
bioinformatics platforms
network

Greece
Biomedical Research
Foundation of the Academy
of Athens, Athens

Hungary
Agricultural Biotechnology
Center, Godollo

India
Centre for DNA Fingerprinting
and Diagnostics (CDFD),
Hyderabad

Israel
Weizmann Institute of
Science, Department of
Biological Services, Rehovot

Italy
CNR - Institute for Biomedical
Technologies, Bioinformatics
and Genomic Group, Bari

Mexico
Nodo Nacional EMBnet,
Centro de Investigación
sobre Fijación de Nitrógeno,
Cuernavaca, Morelos

The Netherlands
Dept. of Genome
Informatics, Wageningen UR

Norway
The Norwegian EMBnet
Node, The Biotechnology
Centre of Oslo

Pakistan
COMSATS Institute of
Information Technology,
Chak Shahzaad, Islamabad

Poland
Institute of Biochemistry and
Biophysics, Polish Academy
of Sciences, Warszawa

Portugal
Instituto Gulbenkian de
Ciencia, Centro Portugues
de Bioinformatica, Oeiras

Russia
Biocomputing Group,
Belozersky Institute, Moscow

Slovakia
Institute of Molecular Biology,
Slovak Academy of Science,
Bratislava

South Africa
SANBI, University of the
Western Cape, Bellville

Spain
EMBnet/CNB, Centro
Nacional de Biotecnología,
Madrid

Sri Lanka
Institute of Biochemistry,
Molecular Biology and
Biotechnology, University of

Colombo, Colombo

Sweden
Uppsala Biomedical Centre,
Computing Department,
Uppsala

Switzerland
Swiss Institute of
Bioinformatics, Lausanne

National Nodes Specialist Nodes
EBI
EBI Embl Outstation, Hinxton,
Cambridge, UK

ETI
Amsterdam, The Netherlands

ICGEB
International Centre for
Genetic Engineering and
Biotechnology, Trieste, Italy

IHCP
Institute of Health and
Consumer Protection, Ispra.
Italy

ILRI/BECA
International Livestock
Research Institute, Nairobi,
Kenya

LION Bioscience
LION Bioscience AG,
Heidelberg, Germany

MIPS
Muenchen, Germany

UMBER
School of Biological
Sciences, The University of
Manchester,, UK

for more information visit our Web site

www.embnet.org

